300,100 research outputs found
Magnetically Regulated Star Formation in Turbulent Clouds
We investigate numerically the combined effects of supersonic turbulence,
strong magnetic fields and ambipolar diffusion on cloud evolution leading to
star formation. We find that, in clouds that are initially magnetically
subcritical, supersonic turbulence can speed up star formation, through
enhanced ambipolar diffusion in shocks. The speedup overcomes a major objection
to the standard scenario of low-mass star formation involving ambipolar
diffusion, since the diffusion time scale at the average density of a molecular
cloud is typically longer than the cloud life time. At the same time, the
strong magnetic field can prevent the large-scale supersonic turbulence from
converting most of the cloud mass into stars in one (short) turbulence crossing
time, and thus alleviate the high efficiency problem associated with the
turbulence-controlled picture for low-mass star formation. We propose that
relatively rapid but inefficient star formation results from supersonic
collisions of somewhat subcritical gas in strongly magnetized, turbulent
clouds. The salient features of this shock-accelerated, ambipolar
diffusion-regulated scenario are demonstrated with numerical experiments.Comment: 10 pages, 3 figures, accepted for publication in ApJ
Recommended from our members
Plasma fluctuations as Markovian noise
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.Physic
decays
Effective chiral theory of mesons is applied to study the four decay modes of
. Theoretical values of the branching ratios are in
agreement with the data. The theory predicts that the resonance plays a
dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur
Difficulties in probing density dependent symmetry potential with the HBT interferometry
Based on the updated UrQMD transport model, the effect of the symmetry
potential energy on the two-nucleon HBT correlation is investigated with the
help of the coalescence program for constructing clusters, and the CRAB
analyzing program of the two-particle HBT correlation. An obvious non-linear
dependence of the neutron-proton (or neutron-neutron) HBT correlation function
() at small relative momenta on the stiffness factor of the
symmetry potential energy is found: when , the
increases rapidly with increasing , while it starts to saturate if
. It is also found that both the symmetry potential energy
at low densities and the conditions of constructing clusters at the late stage
of the whole process influence the two-nucleon HBT correlation with the same
power.Comment: 11 pages, 4 figure
Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses
Dynamic method to distinguish between left- and right-handed chiral molecules
We study quantum systems with broken symmetry that can be modelled as cyclic
three-level atoms with coexisting one- and two-photon transitions. They can be
selectively optically excited to any state. As an example, we show that left-
and right-handed chiral molecules starting in the same initial states can
evolve into different final states by a purely dynamic transfer process. That
means, left- and right-handed molecules can be distinguished purely
dynamically.Comment: 4 pages, submitted to Phys. Rev.
Atemporal diagrams for quantum circuits
A system of diagrams is introduced that allows the representation of various
elements of a quantum circuit, including measurements, in a form which makes no
reference to time (hence ``atemporal''). It can be used to relate quantum
dynamical properties to those of entangled states (map-state duality), and
suggests useful analogies, such as the inverse of an entangled ket. Diagrams
clarify the role of channel kets, transition operators, dynamical operators
(matrices), and Kraus rank for noisy quantum channels. Positive (semidefinite)
operators are represented by diagrams with a symmetry that aids in
understanding their connection with completely positive maps. The diagrams are
used to analyze standard teleportation and dense coding, and for a careful
study of unambiguous (conclusive) teleportation. A simple diagrammatic argument
shows that a Kraus rank of 3 is impossible for a one-qubit channel modeled
using a one-qubit environment in a mixed state.Comment: Minor changes in references. Latex 32 pages, 13 figures in text using
PSTrick
- …
