300,100 research outputs found

    Magnetically Regulated Star Formation in Turbulent Clouds

    Full text link
    We investigate numerically the combined effects of supersonic turbulence, strong magnetic fields and ambipolar diffusion on cloud evolution leading to star formation. We find that, in clouds that are initially magnetically subcritical, supersonic turbulence can speed up star formation, through enhanced ambipolar diffusion in shocks. The speedup overcomes a major objection to the standard scenario of low-mass star formation involving ambipolar diffusion, since the diffusion time scale at the average density of a molecular cloud is typically longer than the cloud life time. At the same time, the strong magnetic field can prevent the large-scale supersonic turbulence from converting most of the cloud mass into stars in one (short) turbulence crossing time, and thus alleviate the high efficiency problem associated with the turbulence-controlled picture for low-mass star formation. We propose that relatively rapid but inefficient star formation results from supersonic collisions of somewhat subcritical gas in strongly magnetized, turbulent clouds. The salient features of this shock-accelerated, ambipolar diffusion-regulated scenario are demonstrated with numerical experiments.Comment: 10 pages, 3 figures, accepted for publication in ApJ

    τρππν\tau\to\rho\pi\pi\nu decays

    Full text link
    Effective chiral theory of mesons is applied to study the four decay modes of τρππν\tau\to\rho\pi\pi\nu. Theoretical values of the branching ratios are in agreement with the data. The theory predicts that the a1a_{1} resonance plays a dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur

    Difficulties in probing density dependent symmetry potential with the HBT interferometry

    Full text link
    Based on the updated UrQMD transport model, the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters, and the CRAB analyzing program of the two-particle HBT correlation. An obvious non-linear dependence of the neutron-proton (or neutron-neutron) HBT correlation function (Cnp,nnC_{np,nn}) at small relative momenta on the stiffness factor γ\gamma of the symmetry potential energy is found: when γ0.8\gamma \lesssim 0.8, the Cnp,nnC_{np,nn} increases rapidly with increasing γ\gamma, while it starts to saturate if γ0.8\gamma \gtrsim 0.8. It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.Comment: 11 pages, 4 figure

    Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism

    Get PDF
    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses

    Dynamic method to distinguish between left- and right-handed chiral molecules

    Full text link
    We study quantum systems with broken symmetry that can be modelled as cyclic three-level atoms with coexisting one- and two-photon transitions. They can be selectively optically excited to any state. As an example, we show that left- and right-handed chiral molecules starting in the same initial states can evolve into different final states by a purely dynamic transfer process. That means, left- and right-handed molecules can be distinguished purely dynamically.Comment: 4 pages, submitted to Phys. Rev.

    Atemporal diagrams for quantum circuits

    Full text link
    A system of diagrams is introduced that allows the representation of various elements of a quantum circuit, including measurements, in a form which makes no reference to time (hence ``atemporal''). It can be used to relate quantum dynamical properties to those of entangled states (map-state duality), and suggests useful analogies, such as the inverse of an entangled ket. Diagrams clarify the role of channel kets, transition operators, dynamical operators (matrices), and Kraus rank for noisy quantum channels. Positive (semidefinite) operators are represented by diagrams with a symmetry that aids in understanding their connection with completely positive maps. The diagrams are used to analyze standard teleportation and dense coding, and for a careful study of unambiguous (conclusive) teleportation. A simple diagrammatic argument shows that a Kraus rank of 3 is impossible for a one-qubit channel modeled using a one-qubit environment in a mixed state.Comment: Minor changes in references. Latex 32 pages, 13 figures in text using PSTrick
    corecore