519 research outputs found
Electrical Switching in Metallic Carbon Nanotubes
We present first-principles calculations of quantum transport which show that
the resistance of metallic carbon nanotubes can be changed dramatically with
homogeneous transverse electric fields if the nanotubes have impurities or
defects. The change of the resistance is predicted to range over more than two
orders of magnitude with experimentally attainable electric fields. This novel
property has its origin that backscattering of conduction electrons by
impurities or defects in the nanotubes is strongly dependent on the strength
and/or direction of the applied electric fields. We expect this property to
open a path to new device applications of metallic carbon nanotubes.Comment: 4 pages and 4 figure
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Exact zero-point energy shift in the , many modes dynamic Jahn-Teller systems at strong coupling
We find the exact semiclassical (strong coupling) zero-point energy shifts
applicable to the and dynamic Jahn-Teller
problems, for an arbitrary number of discrete vibrational modes
simultaneously coupled to one single electronic level. We also obtain an
analytical formula for the frequency of the resulting normal modes, which has
an attractive and apparently general Slater-Koster form. The limits of validity
of this approach are assessed by comparison with O'Brien's previous
effective-mode approach, and with accurate numerical diagonalizations.
Numerical values obtained for with and coupling
constants appropriate to C are used for this purpose, and are
discussed in the context of fullerene.Comment: 20 pages, 4 ps figure
Ab initio Pseudopotential Plane-wave Calculations of the Electronic Structure of YBa_2Cu_3O_7
We present an ab initio pseudopotential local density functional calculation
for stoichiometric high-Tc cuprate YBa_2Cu_3O_7 using the plane-wave basis set.
We have overcome well-known difficulties in applying pseudopotential methods to
first-row elements, transition metals, and rare-earth materials by carefully
generating norm-conserving pseudopotentials with excellent transferability and
employing an extremely efficient iterative diagonalization scheme optimized for
our purpose. The self-consistent band structures, the total and site-projected
densities of states, the partial charges and their symmetry-decompositions, and
some characteristic charge densities near E_f are presented. We compare our
results with various existing (F)LAPW and (F)LMTO calculations and establish
that the ab initio pseudopotential method is competitive with other methods in
studying the electronic structure of such complicated materials as high-Tc
cuprates. [8 postscript files in uuencoded compressed form]Comment: 14 pages, RevTeX v3.0, 8 figures (appended in postscript file), SNUTP
94-8
Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes
While most calculations on the properties of the ferromagnetic semiconductor
GaAs:Mn have focussed on isolated Mn substituting the Ga site (Mn), we
investigate here whether alternate lattice sites are favored and what the
magnetic consequences of this might be. Under As-rich (Ga-poor) conditions
prevalent at growth, we find that the formation energies are lower for
Mn over interstitial Mn (Mn).As the Fermi energy is shifted towards
the valence band maximum via external -doping, the formation energy of
Mn is reduced relative to Mn. Furthermore, under epitaxial growth
conditions, the solubility of both substitutional and interstitial Mn are
strongly enhanced over what is possible under bulk growth conditions. The high
concentration of Mn attained under epitaxial growth of p-type material opens
the possibility of Mn atoms forming small clusters. We consider various types
of clusters, including the Coulomb-stabilized clusters involving two Mn
and one Mn. While isolated Mn are hole killers (donors), and therefore
destroy ferromagnetism,complexes such as Mn-Mn-Mn) are found
to be more stable than complexes involving Mn-Mn-Mn. The
former complexes exhibit partial or total quenching of holes, yet Mn in
these complexes provide a channel for a ferromagnetic arrangement of the spins
on the two Mn within the complex. This suggests that ferromagnetism in
Mn doped GaAs arises both from holes due to isolated Mn as well as from
strongly Coulomb stabilized Mn-Mn-Mn clusters.Comment: 7 figure
Direct observation of localized defect states in semiconductor nanotube junctions
Scanning tunneling microscopy of semiconductor-semiconductor carbon nanotube junctions with different band gaps was studied. Characteristic features of the wave functions at different energy levels were exhibited in the atomically resolved scanning tunneling microscopy. The experimental observations in terms of the pentagon-heptagon defects in the junction were interpreted.open888
Calculations of the A_1 phonon frequency in photoexcited Tellurium
Calculations of the A_1 phonon frequency in photoexcited tellurium are
presented. The phonon frequency as a function of photoexcited carrier density
and phonon amplitude is determined. Recent pump probe experiments are
interpreted in the light of these calculatons. It is proposed that, in
conjunction with measurements of the phonon period in ultra-fast pump-probe
reflectivity experiments, the calculated frequency shifts can be used to infer
the evolution of the density of photoexcited carriers on a sub-picosecond
time-scale.Comment: 15 pages Latex, 3 postscript figure
Electronic and structural properties of vacancies on and below the GaP(110) surface
We have performed total-energy density-functional calculations using
first-principles pseudopotentials to determine the atomic and electronic
structure of neutral surface and subsurface vacancies at the GaP(110) surface.
The cation as well as the anion surface vacancy show a pronounced inward
relaxation of the three nearest neighbor atoms towards the vacancy while the
surface point-group symmetry is maintained. For both types of vacancies we find
a singly occupied level at mid gap. Subsurface vacancies below the second layer
display essentially the same properties as bulk defects. Our results for
vacancies in the second layer show features not observed for either surface or
bulk vacancies: Large relaxations occur and both defects are unstable against
the formation of antisite vacancy complexes. Simulating scanning tunneling
microscope pictures of the different vacancies we find excellent agreement with
experimental data for the surface vacancies and predict the signatures of
subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates
Relativistic spin-orbit and spin-spin couplings has been shown to modify the
gravitational waveforms expected from inspiraling binaries with a black hole
and a neutron star. As a result inspiral signals may be missed due to
significant losses in signal-to-noise ratio, if precession effects are ignored
in gravitational-wave searches. We examine the sensitivity of the anticipated
loss of signal-to-noise ratio on two factors: the accuracy of the precessing
waveforms adopted as the true signals and the expected distributions of
spin-orbit tilt angles, given the current understanding of their physical
origin. We find that the results obtained using signals generated by
approximate techniques are in good agreement with the ones obtained by
integrating the 2PN equations. This shows that a complete account of all
high-order post-Newtonian effects is usually not necessary for the
determination of detection efficiencies. Based on our current astrophysical
expectations, large tilt angles are not favored and as a result the decrease in
detection rate varies rather slowly with respect to the black hole spin
magnitude and is within 20--30% of the maximum possible values.Comment: 7 fig., accepted by Phys. Rev. D Minor modification
Thermal and Tunneling Pair Creation of Quasiparticles in Quantum Hall Systems
We make a semiclassical analysis of thermal pair creations of quasiparticles
at various filling factors in quantum Hall systems. It is argued that the gap
energy is reduced considerably by the Coulomb potential made by impurities. It
is also shown that a tunneling process becomes important at low temperature and
at strong magnetic field. We fit typical experimental data excellently based on
our semiclassical results of the gap energy.Comment: 6 pages, 6 PS figures, to be published in Phys.Rev.
- …
