68,579 research outputs found

    Nucleation of quark matter in neutron stars cores

    Get PDF
    We consider the general conditions of quark droplets formation in high density neutron matter. The growth of the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the medium it takes place. The conditions for quark bubble formation are analyzed within the frameworks of both dissipative and non-dissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and of the microscopic parameters of the quark nuclei. As an application of the obtained formalism we analyze the first order phase transition from neutron matter to quark matter in rapidly rotating neutron stars cores, triggered by the gravitational energy released during the spinning down of the neutron star. The endothermic conversion process, via gravitational energy absorption, could take place, in a very short time interval, of the order of few tens seconds, in a class of dense compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap

    Electro-diffusion in a plasma with two ion species

    Full text link
    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion (ICF) capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.Comment: Submitted to Phys. Plasmas on 2012-03-06 (revised version 05/13/2012

    Spin-Current Relaxation Time in Spin-Polarized Heisenberg Paramagnets

    Full text link
    We study the spatial Fourier transform of the spin correlation function G_q(t) in paramagnetic quantum crystals by direct simulation of a 1d lattice of atoms interacting via a nearest-neighbor Heisenberg exchange Hamiltonian. Since it is not practical to diagonalize the s=1/2 exchange Hamiltonian for a lattice which is of sufficient size to study long-wavelength (hydrodynamic) fluctuations, we instead study the s -> infinity limit and treat each spin as a vector with a classical equation of motion. The simulations give a detailed picture of the correlation function G_q(t) and its time derivatives. At high polarization, there seems to be a hierarchy of frequency scales: the local exchange frequency, a wavelength-independent relaxation rate 1/tau that vanishes at large polarization P ->1, and a wavelength-dependent spin-wave frequency proportional to q^2. This suggests a form for the correlation function which modifies the spin diffusion coefficients obtained in a moments calculation by Cowan and Mullin, who used a standard Gaussian ansatz for the second derivative of the correlation function.Comment: 6 pages, 3 figure

    Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF_3

    Get PDF
    Cubic scandium trifluoride (ScF_3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO_9 structure of ScF_3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion

    Magnetization and susceptibility of ferrofluids

    Full text link
    A second-order Taylor series expansion of the free energy functional provides analytical expressions for the magnetic field dependence of the free energy and of the magnetization of ferrofluids, here modelled by dipolar Yukawa interaction potentials. The corresponding hard core dipolar Yukawa reference fluid is studied within the framework of the mean spherical approximation. Our findings for the magnetic and phase equilibrium properties are in quantitative agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure

    Thermal rounding of the depinning transition

    Full text link
    We study thermal effects at the depinning transition by numerical simulations of driven one-dimensional elastic interfaces in a disordered medium. We find that the velocity of the interface, evaluated at the critical depinning force, can be correctly described with the power law vTψv\sim T^\psi, where ψ\psi is the thermal exponent. Using the sample-dependent value of the critical force, we precisely evaluate the value of ψ\psi directly from the temperature dependence of the velocity, obtaining the value ψ=0.15±0.01\psi = 0.15 \pm 0.01. By measuring the structure factor of the interface we show that both the thermally-rounded and the T=0 depinning, display the same large-scale geometry, described by an identical divergence of a characteristic length with the velocity ξvν/β\xi \propto v^{-\nu/\beta}, where ν\nu and β\beta are respectively the T=0 correlation and depinning exponents. We discuss the comparison of our results with previous estimates of the thermal exponent and the direct consequences for recent experiments on magnetic domain wall motion in ferromagnetic thin films.Comment: 6 pages, 3 figure

    Interaction driven metal-insulator transition in strained graphene

    Full text link
    The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between π\pi-electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that without strain, graphene remains metallic and changing the substrate from SiO2_2 to suspended samples hardly makes any difference. In contrast, applying a rather large -- but experimentally realistic -- uniform and isotropic strain of about 15%15\% seems to be a promising route to making graphene an antiferromagnetic Mott insulator.Comment: Updated version: 6 pages, 3 figure

    Exact solutions for a mean-field Abelian sandpile

    Full text link
    We introduce a model for a sandpile, with N sites, critical height N and each site connected to every other site. It is thus a mean-field model in the spin-glass sense. We find an exact solution for the steady state probability distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe
    corecore