68,579 research outputs found
Nucleation of quark matter in neutron stars cores
We consider the general conditions of quark droplets formation in high
density neutron matter. The growth of the quark bubble (assumed to contain a
sufficiently large number of particles) can be described by means of a
Fokker-Planck equation. The dynamics of the nucleation essentially depends on
the physical properties of the medium it takes place. The conditions for quark
bubble formation are analyzed within the frameworks of both dissipative and
non-dissipative (with zero bulk and shear viscosity coefficients) approaches.
The conversion time of the neutron star to a quark star is obtained as a
function of the equation of state of the neutron matter and of the microscopic
parameters of the quark nuclei. As an application of the obtained formalism we
analyze the first order phase transition from neutron matter to quark matter in
rapidly rotating neutron stars cores, triggered by the gravitational energy
released during the spinning down of the neutron star. The endothermic
conversion process, via gravitational energy absorption, could take place, in a
very short time interval, of the order of few tens seconds, in a class of dense
compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap
Electro-diffusion in a plasma with two ion species
Electric field is a thermodynamic force that can drive collisional
inter-ion-species transport in a multicomponent plasma. In an inertial
confinement fusion (ICF) capsule, such transport causes fuel ion separation
even with a target initially prepared to have equal number densities for the
two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient
and the thermo-diffusion driven by ion and electron temperature gradients,
electro-diffusion has a critical dependence on the charge-to-mass ratio of the
ion species. Specifically, it is shown here that electro-diffusion vanishes if
the ion species have the same charge-to-mass ratio. An explicit expression for
the electro-diffusion ratio is obtained and used to investigate the relative
importance of electro- and baro-diffusion mechanisms. In particular, it is
found that electro-diffusion reinforces baro-diffusion in the deuterium and
tritium mix, but tends to cancel it in the deuterium and helium-3 mix.Comment: Submitted to Phys. Plasmas on 2012-03-06 (revised version 05/13/2012
Spin-Current Relaxation Time in Spin-Polarized Heisenberg Paramagnets
We study the spatial Fourier transform of the spin correlation function
G_q(t) in paramagnetic quantum crystals by direct simulation of a 1d lattice of
atoms interacting via a nearest-neighbor Heisenberg exchange Hamiltonian. Since
it is not practical to diagonalize the s=1/2 exchange Hamiltonian for a lattice
which is of sufficient size to study long-wavelength (hydrodynamic)
fluctuations, we instead study the s -> infinity limit and treat each spin as a
vector with a classical equation of motion. The simulations give a detailed
picture of the correlation function G_q(t) and its time derivatives. At high
polarization, there seems to be a hierarchy of frequency scales: the local
exchange frequency, a wavelength-independent relaxation rate 1/tau that
vanishes at large polarization P ->1, and a wavelength-dependent spin-wave
frequency proportional to q^2. This suggests a form for the correlation
function which modifies the spin diffusion coefficients obtained in a moments
calculation by Cowan and Mullin, who used a standard Gaussian ansatz for the
second derivative of the correlation function.Comment: 6 pages, 3 figure
Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF_3
Cubic scandium trifluoride (ScF_3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO_9 structure of ScF_3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion
Magnetization and susceptibility of ferrofluids
A second-order Taylor series expansion of the free energy functional provides
analytical expressions for the magnetic field dependence of the free energy and
of the magnetization of ferrofluids, here modelled by dipolar Yukawa
interaction potentials. The corresponding hard core dipolar Yukawa reference
fluid is studied within the framework of the mean spherical approximation. Our
findings for the magnetic and phase equilibrium properties are in quantitative
agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure
Thermal rounding of the depinning transition
We study thermal effects at the depinning transition by numerical simulations
of driven one-dimensional elastic interfaces in a disordered medium. We find
that the velocity of the interface, evaluated at the critical depinning force,
can be correctly described with the power law , where is
the thermal exponent. Using the sample-dependent value of the critical force,
we precisely evaluate the value of directly from the temperature
dependence of the velocity, obtaining the value . By
measuring the structure factor of the interface we show that both the
thermally-rounded and the T=0 depinning, display the same large-scale geometry,
described by an identical divergence of a characteristic length with the
velocity , where and are respectively
the T=0 correlation and depinning exponents. We discuss the comparison of our
results with previous estimates of the thermal exponent and the direct
consequences for recent experiments on magnetic domain wall motion in
ferromagnetic thin films.Comment: 6 pages, 3 figure
Interaction driven metal-insulator transition in strained graphene
The question of whether electron-electron interactions can drive a metal to
insulator transition in graphene under realistic experimental conditions is
addressed. Using three representative methods to calculate the effective
long-range Coulomb interaction between -electrons in graphene and solving
for the ground state using quantum Monte Carlo methods, we argue that without
strain, graphene remains metallic and changing the substrate from SiO to
suspended samples hardly makes any difference. In contrast, applying a rather
large -- but experimentally realistic -- uniform and isotropic strain of about
seems to be a promising route to making graphene an antiferromagnetic
Mott insulator.Comment: Updated version: 6 pages, 3 figure
Exact solutions for a mean-field Abelian sandpile
We introduce a model for a sandpile, with N sites, critical height N and each
site connected to every other site. It is thus a mean-field model in the
spin-glass sense. We find an exact solution for the steady state probability
distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe
- …
