321,198 research outputs found
Holonomic Quantum Computing Based on the Stark Effect
We propose a spin manipulation technique based entirely on electric fields
applied to acceptor states in -type semiconductors with spin-orbit coupling.
While interesting in its own right, the technique can also be used to implement
fault-resilient holonomic quantum computing. We explicitly compute adiabatic
transformation matrix (holonomy) of the degenerate states and comment on the
feasibility of the scheme as an experimental technique.Comment: 5 page
Translational cooling and storage of protonated proteins in an ion trap at subkelvin temperatures
Gas-phase multiply charged proteins have been sympathetically cooled to
translational temperatures below 1 K by Coulomb interaction with laser-cooled
barium ions in a linear ion trap. In one case, an ensemble of 53 cytochrome c
molecules (mass ~ 12390 amu, charge +17 e) was cooled by ~ 160 laser-cooled
barium ions to less than 0.75 K. Storage times of more than 20 minutes have
been observed and could easily be extended to more than an hour. The technique
is applicable to a wide variety of complex molecules.Comment: same version as published in Phys. Rev.
Intrinsic Spin Hall Effect in the Two Dimensional Hole Gas
We show that two types of spin-orbit coupling in the 2 dimensional hole gas
(2DHG), with and without inversion symmetry breaking, contribute to the
intrinsic spin Hall effect\cite{murakami2003,sinova2003}. Furthermore, the
vertex correction due to impurity scattering vanishes in both cases, in sharp
contrast to the case of usual Rashba coupling in the electron band. Recently,
the spin Hall effect in a hole doped semiconductor has been observed
experimentally by Wunderlich \emph{et al}\cite{wunderlich2004}. From the fact
that the life time broadening is smaller than the spin splitting, and the fact
impurity vertex corrections vanish in this system, we argue that the observed
spin Hall effect should be in the intrinsic regime.Comment: Minor typos fixed, one reference adde
Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory
Five-dimensional collective Hamiltonian based on the covariant density
functional theory has been applied to study the the low-lying states of
even-even Gd isotopes. The shape evolution from Gd to
Gd is presented. The experimental energy spectra and intraband
transition probabilities for the Gd isotopes are reproduced by the
present calculations. The relative ratios in present calculations are
also compared with the available interacting boson model results and
experimental data. It is found that the occupations of neutron
orbital result in the well-deformed prolate shape, and are essential for Gd
isotopes.Comment: 11pages, 10figure
Doublet bands in Cs in the triaxial rotor model coupled with two quasiparticles
The positive parity doublet bands based on the configuration in Cs have been investigated in the two
quasi-particles coupled with a triaxial rotor model. The energy spectra ,
energy staggering parameter , and
values, intraband ratios,
ratios, and orientation of the
angular momentum for the rotor as well as the valence proton and neutron are
calculated. After including the pairing correlation, good agreement has been
obtained between the calculated results and the data available, which supports
the interpretation of this positive parity doublet bands as chiral bands.Comment: Phys.Rev.C (accepted
Shell-model-like approach based on cranking covariant density functional theory: bandcrossing and shape evolution in Fe
The shell-model-like approach is implemented to treat the cranking many-body
Hamiltonian based on the covariant density functional theory including pairing
correlations with exact particle number conservation. The self-consistency is
achieved by iterating the single-particle occupation probabilities back to the
densities and currents. As an example, the rotational structures observed in
the neutron-rich nucleus Fe are investigated and analyzed. Without
introducing any \emph{ad hoc} parameters, the bandheads, the rotational
spectra, and the relations between the angular momentum and rotational
frequency for the positive parity band A, and negative parity bands B and C are
well reproduced. The essential role of the pairing correlations is revealed. It
is found that for band A, the bandcrossing is due to the change of the last two
occupied neutrons from the signature partners to the
signature partners. For the two negative parity signature partner bands B and
C, the bandcrossings are due to the pseudo-crossing between the
and the orbitals. Generally speaking, the deformation
parameters for bands A, B, and C decrease with rotational frequency.
For band A, the deformation jumps from to
around the bandcrossing. In comparison with its signature partner band C, band
B exhibits appreciable triaxial deformation
Non-Extensive Quantum Statistics with Particle - Hole Symmetry
Based on Tsallis entropy and the corresponding deformed exponential function,
generalized distribution functions for bosons and fermions have been used since
a while. However, aiming at a non-extensive quantum statistics further
requirements arise from the symmetric handling of particles and holes
(excitations above and below the Fermi level). Naive replacements of the
exponential function or cut and paste solutions fail to satisfy this symmetry
and to be smooth at the Fermi level at the same time. We solve this problem by
a general ansatz dividing the deformed exponential to odd and even terms and
demonstrate that how earlier suggestions, like the kappa- and q-exponential
behave in this respect
- …
