128,082 research outputs found
Short-coherence length superconductivity in the Attractive Hubbard Model in three dimensions
We study the normal state and the superconducting transition in the
Attractive Hubbard Model in three dimensions, using self-consistent
diagrammatics. Our results for the self-consistent -matrix approximation are
consistent with 3D-XY power-law critical scaling and finite-size scaling. This
is in contrast to the exponential 2D-XY scaling the method was able to capture
in our previous 2D calculation. We find the 3D transition temperature at
quarter-filling and to be . The 3D critical regime is much
narrower than in 2D and the ratio of the mean-field transition to is
about 5 times smaller than in 2D. We also find that, for the parameters we
consider, the pseudogap regime in 3D (as in 2D) coincides with the critical
scaling regime.Comment: 4 pages, 5 figure
Leptonic decay of Heavy-light Mesons in a QCD Potential Model
We study the masses and decay constants of heavy-light flavour mesons D, Ds,
B and Bs in a QCD Potential model. The mesonic wavefunction is used to compute
the masses of D and B mesons in the ground state and the wavefunction is
transformed to momentum space to estimate the pseudoscalar decay constants of
these mesons. The leptonic decay widths and branching ratio of these mesons for
different leptonic channels are also computed to compare with the experimental
values. The results are found to be compatible with available data.Comment: 9 pages,3 table
Refining MOND interpolating function and TeVeS Lagrangian
The phenomena customly called Dark Matter or Modified Newtonian Dynamics
(MOND) have been argued by Bekenstein (2004) to be the consequences of a
covariant scalar field, controlled by a free function (related to the MOND
interpolating function) in its Lagrangian density. In the context of this
relativistic MOND theory (TeVeS), we examine critically the interpolating
function in the transition zone between weak and strong gravity. Bekenstein's
toy model produces too gradually varying functions and fits rotation curves
less well than the standard MOND interpolating function. However, the latter
varies too sharply and implies an implausible external field effect (EFE).
These constraints on opposite sides have not yet excluded TeVeS, but made the
zone of acceptable interpolating functions narrower. An acceptable "toy"
Lagrangian density function with simple analytical properties is singled out
for future studies of TeVeS in galaxies. We also suggest how to extend the
model to solar system dynamics and cosmology, and compare with strong lensing
data (see also astro-ph/0509590).Comment: accepted for publication in ApJ Letter
Proton-neutron pairing correlations in the nuclear shell model
A shell-model study of proton-neutron pairing in f - p shell nuclei using a
parametrized hamiltonian that includes deformation and spin-orbit effects as
well as isoscalar and isovector pairing is reported. By working in a
shell-model framework we are able to assess the role of the various modes of
proton-neutron pairing in the presence of nuclear deformation without violating
symmetries. Results are presented for Ti, Ti and Cr.Comment: Presented at "XXXIII Symposium on Nuclear Physics" 05 Jan 2010 - 08
Jan 2010; Hacienda Cocoyoc, Morelos, Mexic
Self-consistent models of triaxial galaxies in MOND gravity
The Bekenstein-Milgrom gravity theory with a modified Poisson equation is
tested here for the existence of triaxial equilibrium solutions. Using the
non-negative least square method, we show that self-consistent triaxial
galaxies exist for baryonic models with a mild density cusp . Self-consistency is achieved for a wide range of central
concentrations, , representing
low-to-high surface brightness galaxies. Our results demonstrate for the first
time that the orbit superposition technique is fruitful for constructing galaxy
models beyond Newtonian gravity, and triaxial cuspy galaxies might exist
without the help of Cold dark Matter.Comment: 19 pages, 1 table, 7 figures, Accepted for publication in Ap
- …
