17,285 research outputs found

    Isolated and Dynamical Horizons and Their Applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in an unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity

    Self-intersecting marginally outer trapped surfaces

    No full text
    We have shown previously that a merger of marginally outer trapped surfaces (MOTSs) occurs in a binary black hole merger and that there is a continuous sequence of MOTSs which connects the initial two black holes to the final one. In this paper, we confirm this scenario numerically and we detail further improvements in the numerical methods for locating MOTSs. With these improvements, we confirm the merger scenario and demonstrate the existence of self-intersecting MOTSs formed in the immediate aftermath of the merger. These results will allow us to track physical quantities across the non-linear merger process and to potentially infer properties of the merger from gravitational wave observations

    Quantum gravity and spin systems

    Get PDF
    A new method for nonperturbative investigations of quantum gravity is presented in which the simplicial path integral is approximated by the partition function of a spin system. This facilitates analytical and numerical computations considerably. In two dimensions equivalence to an Ising model with ternary couplings is recovered. First simulations in four dimensions indicate strong similarities to the phase structure of original Regge theory.Comment: 3 pages, uuencoded postscript file, contribution to the XII Int. Symp. on Lattice Field Theory, Bielefeld, Germany, 199

    Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging

    Full text link
    Efficient multi-dimensional template placement is crucial in computationally intensive matched-filtering searches for Gravitational Waves (GWs). Here, we implement the Neighboring Cell Algorithm (NCA) to improve the detection volume of an existing Compact Binary Coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from over-dense regions to under-dense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned--single-spin neutron-star--black-hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates

    Uplink Linear Receivers for Multi-cell Multiuser MIMO with Pilot Contamination: Large System Analysis

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users at high rates. However, the receiver processing in the uplink relies on channel estimates which are known to suffer from pilot interference. In this work, making use of the similarity of the uplink received signal in CDMA with that of a multi-cell multi-antenna system, we perform a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate. We assume a Rayleigh fading channel with different received powers from users. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. Through the SINR expression we explore the scenario where the number of users being served are comparable to the number of antennas at the base station. The SINR explicitly captures the effect of pilot contamination and is found to be the same as that employing a matched filter with a pilot contaminated estimate. We also find the exact expression for the interference suppression obtained using an MMSE filter which is an important factor when there are significant number of users in the system as compared to the number of antennas. In a typical set up, in terms of the five percentile SINR, the MMSE filter is shown to provide significant gains over matched filtering and is within 5 dB of MMSE filter with perfect channel estimate. Simulation results for achievable rates are close to large system limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Monitoring and controlling bank risk: does risky debt serve any purpose?

    Get PDF
    To examine whether mandating banks to issue subordinated debt would enhance market monitoring and control risk-taking, the authors extract the credit-spread curve for each banking firm in their sample. After controlling for changes in market and liquidity variables, they find that changes in credit spreads do not reflect changes in bank risk variables. The result is robust to firm type, examination rating, size, leverage, and profitability, as well as to different model specifications. They also find that issuing subordinated debt does not alter banks' risk-taking behavior. They conclude that a mandatory subordinated debt requirement for banks is unlikely to provide the intended benefits of enhancing risk-monitoring or controlling risk-taking.Bank capital ; Risk

    Efficiency of Dopant-Induced Ignition of Helium Nanoplasmas

    Full text link
    Helium nanodroplets irradiated by intense near-infrared laser pulses ignite and form highly ionized nanoplasmas even at laser intensities where helium is not directly ionized by the optical field, provided the droplets contain a few dopant atoms. We present a combined theoretical and experimental study of the He nanoplasma ignition dynamics for various dopant species. We find that the efficiency of dopants to ignite a nanoplasma in helium droplets strongly varies and mostly depends on (i) the pick-up process, (ii) the number of free electrons each dopant donates upon ionization, and remarkably, (iii) by the hitherto unexplored effect of the dopant location in or on the droplet
    corecore