2,403 research outputs found
Movement patterns and athletic performance of leopards in the Okavango Delta
Although leopards are the most widespread of all the big cats and are known for their adaptability, they are elusive and little is known in detail about their movement and hunting energetics. We used high-resolution GPS/IMU (inertial measurement unit) collars to record position, activity and the first high-speed movement data on four male leopards in the Okavango Delta, an area with high habitat diversity and habitat fragmentation. Leopards in this study were generally active and conducted more runs during the night, with peaks in activity and number of runs in the morning and evening twilight. Runs were generally short (less than 100 m) and relatively slow (maximum speed 5.3 m s−1, mean of individual medians) compared to other large predators. Average daily travel distance was 11 km and maximum daily travel distance was 29 km. No direct correlation was found between average daily temperature and travel distance or between season and travel distance. Total daily energy requirements based on locomotor cost and basal metabolic rate varied little between individuals and over time. This study provides novel insights into movement patterns and athletic performance of leopards through quantitative high-resolution measurement of the locomotor, energetic, spatial and temporal movement characteristics. The results are unbiased by methodological and observational limitations characteristic of previous studies and demonstrate the utility of applying new technologies to field studies of elusive nocturnal species
Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage DC gun
We present a comparison between space charge calculations and direct
measurements of the transverse phase space for space charge dominated electron
bunches after a high voltage photoemission DC gun followed by an emittance
compensation solenoid magnet. The measurements were performed using a
double-slit setup for a set of parameters such as charge per bunch and the
solenoid current. The data is compared with detailed simulations using 3D space
charge codes GPT and Parmela3D with initial particle distributions created from
the measured transverse and temporal laser profiles. Beam brightness as a
function of beam fraction is calculated for the measured phase space maps and
found to approach the theoretical maximum set by the thermal energy and
accelerating field at the photocathode.Comment: 11 pages, 23 figures. submitted to Phys Rev ST-A
The blue stragglers formed via mass transfer in old open clusters
In this paper, we present the simulations for the primordial blue stragglers
in the old open cluster M67 based on detailed modelling of the evolutionary
processes. The principal aim is to discuss the contribution of mass transfer
between the components of close binaries to the blue straggler population in
M67. First, we followed the evolution of a binary of 1.4M+0.9M.
The synthetic evolutionary track of the binary system revealed that a
primordial blue straggler had a long lifetime in the observed blue straggler
region of color-magnitude diagram. Second, a grid of models for close binary
systems experiencing mass exchange were computed from 1Gyr to 6Gyr in order to
account for primordial blue-straggler formation in a time sequence. Based on
such a grid, Monte-Carlo simulations were applied for the old open cluster M67.
Adopting appropriate orbital parameters, 4 primordial blue stragglers were
predicted by our simulations. This was consistent with the observational fact
that only a few blue stragglers in M67 were binaries with short orbital
periods. An upper boundary of the primordial blue stragglers in the
color-magnitude diagram (CMD) was defined and could be used to distinguish blue
stragglers that were not formed via mass exchange. Using the grid of binary
models, the orbital periods of the primordial BSs could be predicted. Compared
with the observations, it is clear that the mechanism discussed in this work
alone cannot fully predict the blue straggler population in M67. There must be
several other processes also involved in the formation of the observed blue
stragglers in M67.Comment: 11 pages, 6 figures, A&A accepte
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
A 12um ISOCAM Survey of the ESO-Sculptor Field: Data Reduction and Analysis
We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM
open time observation performed on the ESO-Sculptor Survey field (Arnouts et
al. 1997). A complete catalogue of 142 sources (120 galaxies and 22 stars),
detected with high significance (equivalent to 5sigma), is presented above an
integrated flux density of 0.24mJy. Star/galaxy separation is performed by a
detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and
below this flux density the incompleteness is corrected using two independent
methods. The first method uses stars and the second uses optical counterparts
of the ISOCAM galaxies; these methods yield consistent results. We also apply
an empirical flux density calibration using stars in the field. For each star,
the 12um flux density is derived by fitting optical colours from a multi-band
chi^2 to stellar templates (BaSel-2.0) and using empirical optical-IR
colour-colour relations. This article is a companion analysis to
Rocca-Volmerange 2007 et al. where the 12um faint galaxy counts are presented
and analysed by galaxy type with the evolutionary code PEGASE.3.Comment: 12 pages, 7 figures, figure 1 modified from journal version for size,
accepted for publication in A&A, includes psfig.st
Essai d'appréciation de l'importance épidémiologique des concentrations hivernales d'étourneaux sansonnets (Sturnus vulgaris L.) dans la région portuaire de Brest, Finistère
On the age heterogeneity of the Pleiades, Hyades and Sirius moving groups
We investigate the nature of the classical low-velocity structures in the
local velocity field, i.e. the Pleiades, Hyades and Sirius moving groups. After
using a wavelet transform to locate them in velocity space, we study their
relation with the open clusters kinematically associated with them. By directly
comparing the location of moving group stars in parallax space to the
isochrones of the embedded clusters, we check whether, within the observational
errors on the parallax, all moving group stars could originate from the
on-going evaporation of the associated cluster. We conclude that, in each
moving group, the fraction of stars making up the velocity-space overdensity
superimposed on the background is higher than the fraction of stars compatible
with the isochrone of the associated cluster. These observations thus favour a
dynamical (resonant) origin for the Pleiades, Hyades and Sirius moving groups.Comment: 8 pages, 8 figures, accepted for publication in A&
Towards understanding the variability in biospheric CO2 fluxes:Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2
Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world
Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100
The generation of a flat electron beam directly from a photoinjector is an
attractive alternative to the electron damping ring as envisioned for linear
colliders. It also has potential applications to light sources such as the
generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers.
In this Letter, we report on the experimental generation of a flat-beam with a
measured transverse emittance ratio of for a bunch charge of
nC; the smaller measured normalized root-mean-square emittance is
m and is limited by the resolution of our experimental setup.
The experimental data, obtained at the Fermilab/NICADD Photoinjector
Laboratory, are compared with numerical simulations and the expected scaling
laws.Comment: 5 pages, 3 figure
The CORALIE survey for southern extra-solar planets XV. Discovery of two eccentric planets orbiting HD4113 and HD156846
We report the detection of two very eccentric planets orbiting HD4113 and
HD156846 with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss
telescope at La Silla. The first planet, HD4113b, has minimum mass of
, a period of days and an
eccentricity of . It orbits a metal rich G5V star at
AU which displays an additional radial velocity drift of 28 m s/yr
observed during 8 years. The combination of the radial-velocity data and the
non-detection of any main sequence stellar companion in our high contrast
images taken at the VLT with NACO/SDI, characterizes the companion as a
probable brown dwarf or as a faint white dwarf. The second planet, \object{HD
156846 b}, has minimum mass of M, a period
of days, an eccentricity of and is located
at AU from its parent star. HD156846 is a metal rich G0 dwarf and is
also the primary of a wide binary system ( AU, years). Its
stellar companion, \object{IDS 17147-1914 B}, is a M4 dwarf. The very high
eccentricities of both planets can be explained by Kozai oscillations induced
by the presence of a third object.Comment: 4 pages, 5 figures, A&A Letter accepte
- …
