620 research outputs found
Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements
Quantized spin excitations in a single ferromagnetic microstrip have been
measured using the microwave photovoltage technique. Several kinds of spin wave
modes due to different contributions of the dipole-dipole and the exchange
interactions are observed. Among them are a series of distinct dipole-exchange
spin wave modes, which allow us to determine precisely the subtle spin boundary
condition. A comprehensive picture for quantized spin excitations in a
ferromagnet with finite size is thereby established. The dispersions of the
quantized spin wave modes have two different branches separated by the
saturation magnetization.Comment: 4 pages, 3 figure
Microwave photovoltage and photoresistance effects in ferromagnetic microstrips
We investigate the dc electric response induced by ferromagnetic resonance in
ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization
precession alters the angle of the magnetization with respect to both dc and rf
current. Consequently the time averaged anisotropic magnetoresistance (AMR)
changes (photoresistance). At the same time the time-dependent AMR oscillation
rectifies a part of the rf current and induces a dc voltage (photovoltage). A
phenomenological approach to magnetoresistance is used to describe the distinct
characteristics of the photoresistance and photovoltage with a consistent
formalism, which is found in excellent agreement with experiments performed on
in-plane magnetized ferromagnetic microstrips. Application of the microwave
photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure
Energy Calibration of the JLab Bremsstrahlung Tagging System
In this report, we present the energy calibration of the Hall B
bremsstrahlung tagging system at the Thomas Jefferson National Accelerator
Facility. The calibration was performed using a magnetic pair spectrometer. The
tagged photon energy spectrum was measured in coincidence with pairs
as a function of the pair spectrometer magnetic field. Taking advantage of the
internal linearity of the pair spectrometer, the energy of the tagging system
was calibrated at the level of . The absolute energy scale
was determined using the rate measurements close to the end-point of
the photon spectrum. The energy variations across the full tagging range were
found to be MeV.Comment: 15 pages, 12 figure
Space-time evolution of hadronization
Beside its intrinsic interest for the insights it can give into color
confinement, knowledge of the space-time evolution of hadronization is very
important for correctly interpreting jet-quenching data in heavy ion collisions
and extracting the properties of the produced medium. On the experimental side,
the cleanest environment to study the space-time evolution of hadronization is
semi-inclusive Deeply Inelastic Scattering on nuclear targets. On the
theoretical side, 2 frameworks are presently competing to explain the observed
attenuation of hadron production: quark energy loss (with hadron formation
outside the nucleus) and nuclear absorption (with hadronization starting inside
the nucleus). I discuss recent observables and ideas which will help to
distinguish these 2 mechanisms and to measure the time scales of the
hadronization process.Comment: 6 pages, 4 figures. Based on talks given at "Hot Quarks 2006",
Villasimius, Italy, May 15-20, 2006, and at the "XLIV internataional winter
meeting on nuclear physics", Bormio, Italy, Jan 29 - Feb 5, 2006. To appear
in Eur.Phys.J.
In-Situ Nuclear Magnetic Resonance Investigation of Strain, Temperature, and Strain-Rate Variations of Deformation-Induced Vacancy Concentration in Aluminum
Critical strain to serrated flow in solid solution alloys exhibiting dynamic strain aging (DSA) or Portevin–LeChatelier effect is due to the strain-induced vacancy production. Nuclear magnetic resonance (NMR) techniques can be used to monitor in situ the dynamical behavior of point and line defects in materials during deformation, and these techniques are nondestructive and noninvasive. The new CUT-sequence pulse method allowed an accurate evaluation of the strain-enhanced vacancy diffusion and, thus, the excess vacancy concentration during deformation as a function of strain, strain rate, and temperature. Due to skin effect problems in metals at high frequencies, thin foils of Al were used and experimental results correlated with models based on vacancy production through mechanical work (vs thermal jogs), while in situ annealing of excess vacancies is noted at high temperatures. These correlations made it feasible to obtain explicit dependencies of the strain-induced vacancy concentration on test variables such as the strain, strain rate, and temperature. These studies clearly reveal the power and utility of these NMR techniques in the determination of deformation-induced vacancies in situ in a noninvasive fashion.
Photoproduction of mesons off nuclei
Recent results for the photoproduction of mesons off nuclei are reviewed.
These experiments have been performed for two major lines of research related
to the properties of the strong interaction. The investigation of nucleon
resonances requires light nuclei as targets for the extraction of the isospin
composition of the electromagnetic excitations. This is done with quasi-free
meson photoproduction off the bound neutron and supplemented with the
measurement of coherent photoproduction reactions, serving as spin and/or
isospin filters. Furthermore, photoproduction from light and heavy nuclei is a
very efficient tool for the study of the interactions of mesons with nuclear
matter and the in-medium properties of hadrons. Experiments are currently
rapidly developing due to the combination of high quality tagged (and
polarized) photon beams with state-of-the-art 4pi detectors and polarized
targets
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
The Jlab Upgrade - Studies of the Nucleon with CLAS12
An overview is presented on the program to study the nucleon structure at the
12 GeV JLab upgrade using the CLAS12 detector. The focus is on deeply virtual
exclusive processes to access the generalized parton distributions,
semni-inclusive processes to study transverse momentum dependent distribution
functions, and inclusive spin structure functions and resonance transition form
factors at high Q^2 and with high precision.Comment: 7 pages, 12 figures, NSTAR 2007 conference, Bonn, September 5-8, 200
Search for medium modification of the meson
The photoproduction of vector mesons on various nuclei has been studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. The
vector mesons, , , and , are observed via their decay to
, in order to reduce the effects of final state interactions in the
nucleus. Of particular interest are possible in-medium effects on the
properties of the meson. The spectral function is extracted from
the data on various nuclei, carbon, iron, and titanium, and compared to the
spectrum from liquid deuterium, which is relatively free of nuclear effects. We
observe no significant mass shift for the meson; however, there is some
widening of the resonance in titanium and iron, which is consistent with
expected collisional broadening.Comment: 8 pages, 4 figure
- …
