22 research outputs found

    Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    Get PDF
    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC

    Implementation of FM-Index Based Pattern Search on a Multi-FPGA System

    No full text

    Traffic modelling of software download for reconfigurable terminals

    No full text
    One of the major areas of interest in software radio technology is the envisaged ability to adapt the functionality of a given terminal by downloading software over the wireless link and subsequently installing the software on the device, thereby achieving over-the-air reconfiguration. Downloading modules or functional blocks, from end-user applications to protocol entities, gives users, network operators as well as terminal manufacturers the ability to reconfigure terminals as required in any given situation. This paper proposes a suitable traffic model for a single-source traffic download over the wireless link by describing the statistics of the reconfiguration data as well as the reconfiguration process itself. The proposed model is then extended to encompass the packet-based transmission nature of the transmission service. (8 References)

    Traffic modelling of software download for reconfigurable terminals

    No full text

    Genome Doubling of Northern Spicebush, <i>Lindera benzoin</i> L.

    No full text
    Lindera benzoin is a dioecious understory shrub native to eastern North America. Northern spicebush is a beautiful shrub with a natural round shrub shape, golden-yellow fall foliage, attractive bright red drupes, and precocious yellow flowers in early spring; however, its market value as an ornamental value has been overlooked. To improve the ornamental values of this under-cultivated nursery crop, breeding for a better compact form, larger leaves, enlarged flower clusters and fruit, and increased stress tolerances could all be beneficial. Polyploidy manipulation is a valuable method to improve such traits for many ornamental plants. This study established the genome doubling method by oryzalin-infused solid agar treatment on young northern spicebush seedlings. The seedlings of two wild populations in North Carolina were collected and used. A total of 288 seedlings were treated with solid agar containing 150 µM oryzalin for 24, 72, and 120 h. The results were sporadic in their survival ratios and tetraploid conversion ratios between different treatments; however, a total of 16 tetraploid L. benzoin plants were produced in this study. The 24-h treatment showed the optimal result, with 7.1% of total treated seedlings or 15.2% of surviving seedlings converted into tetraploids. Tetraploid plants had visible differences in leaf morphology, a statistically significant enlarged stomata size, and reduced stomatal density compared to diploid plants. This research provides ploidy manipulation information for all future breeding processes of L. benzoin and related species
    corecore