67,093 research outputs found
Polygraph: Automatically generating signatures for polymorphic worms
It is widely believed that content-signature-based intrusion detection systems (IDSes) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content sub-strings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives. © 2005 IEEE
Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits
Motivated by the problem of simultaneously preserving confidentiality and
usability of data outsourced to third-party clouds, we present two different
database encryption schemes that largely hide data but reveal enough
information to support a wide-range of relational queries. We provide a
security definition for database encryption that captures confidentiality based
on a notion of equivalence of databases from the adversary's perspective. As a
specific application, we adapt an existing algorithm for finding violations of
privacy policies to run on logs encrypted under our schemes and observe low to
moderate overheads.Comment: CCS 2015 paper technical report, in progres
On Horizontal and Vertical Separation in Hierarchical Text Classification
Hierarchy is a common and effective way of organizing data and representing
their relationships at different levels of abstraction. However, hierarchical
data dependencies cause difficulties in the estimation of "separable" models
that can distinguish between the entities in the hierarchy. Extracting
separable models of hierarchical entities requires us to take their relative
position into account and to consider the different types of dependencies in
the hierarchy. In this paper, we present an investigation of the effect of
separability in text-based entity classification and argue that in hierarchical
classification, a separation property should be established between entities
not only in the same layer, but also in different layers. Our main findings are
the followings. First, we analyse the importance of separability on the data
representation in the task of classification and based on that, we introduce a
"Strong Separation Principle" for optimizing expected effectiveness of
classifiers decision based on separation property. Second, we present
Hierarchical Significant Words Language Models (HSWLM) which capture all, and
only, the essential features of hierarchical entities according to their
relative position in the hierarchy resulting in horizontally and vertically
separable models. Third, we validate our claims on real-world data and
demonstrate that how HSWLM improves the accuracy of classification and how it
provides transferable models over time. Although discussions in this paper
focus on the classification problem, the models are applicable to any
information access tasks on data that has, or can be mapped to, a hierarchical
structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM
SIGIR International Conference on the Theory of Information Retrieval
(ICTIR'16
On the predominant mechanisms active during the high power diode laser modification of the wettability characteristics of an SiO2/Al2O3-based ceramic material
The mechanisms responsible for modifications to the wettability characteristics of a SiO2/Al2O3-based ceramic material in terms of a test liquid set comprising of human blood, human blood plasma, glycerol and 4-octonol after high power diode laser (HPDL) treatment have been elucidated. Changes in the contact angle, , and hence the wettability characteristics of the SiO2/Al2O3-based ceramic were attributed primarily to: modifications to the surface roughness of the ceramic resulting from HPDL interaction which accordingly effected reductions in ; the increase in the surface O2 content of the ceramic after HPDL treatment; since an increase in surface O2 content intrinsically brings about a decrease in , and vice versa and the increase in the polar component of the surface energy, due to the HPDL induced surface melting and resolidification which consequently created a partially vitrified microstructure that was seen to augment the wetting action. However, the degree of influence exerted by each mechanism was found to differ markedly. Isolation of each of these mechanisms permitted the magnitude of their influence to be qualitatively determined. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the SiO2/Al2O3-based ceramic. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the SiO2/Al2O3-based ceramic, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics
Geometric Phase, Hannay's Angle, and an Exact Action Variable
Canonical structure of a generalized time-periodic harmonic oscillator is
studied by finding the exact action variable (invariant). Hannay's angle is
defined if closed curves of constant action variables return to the same curves
in phase space after a time evolution. The condition for the existence of
Hannay's angle turns out to be identical to that for the existence of a
complete set of (quasi)periodic wave functions. Hannay's angle is calculated,
and it is shown that Berry's relation of semiclassical origin on geometric
phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
Direct Imaging of Multiple Planets Orbiting the Star HR 8799
Direct imaging of exoplanetary systems is a powerful technique that can
reveal Jupiter-like planets in wide orbits, can enable detailed
characterization of planetary atmospheres, and is a key step towards imaging
Earth-like planets. Imaging detections are challenging due to the combined
effect of small angular separation and large luminosity contrast between a
planet and its host star. High-contrast observations with the Keck and Gemini
telescopes have revealed three planets orbiting the star HR 8799, with
projected separations of 24, 38, and 68 astronomical units. Multi-epoch data
show counter-clockwise orbital motion for all three imaged planets. The low
luminosity of the companions and the estimated age of the system imply
planetary masses between 5 and 13 times that of Jupiter. This system resembles
a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science
Express Nov 13th, 200
Quark deconfinement phase transition for improved quark mass density-dependent model
By using the finite temperature quantum field theory, we calculate the finite
temperature effective potential and extend the improved quark mass
density-dependent model to finite temperature. It is shown that this model can
not only describe the saturation properties of nuclear matter, but also explain
the quark deconfinement phase transition successfully. The critical temperature
is given and the effect of - meson is addressed.Comment: 18 pages, 7 figure
Robust Preparation of GHZ and W States of Three Distant Atoms
Schemes to generate Greenberger-Horne-Zeilinger(GHZ) and W states of three
distant atoms are proposed in this paper. The schemes use the effects of
quantum statistics of indistinguishable photons emitted by the atoms inside
optical cavities. The advantages of the schemes are their robustness against
detection inefficiency and asynchronous emission of the photons. Moreover, in
Lamb-Dicke limit, the schemes do not require simultaneous click of the
detectors, this makes the schemes more realizable in experiments.Comment: 5 pages, 1 fiure. Phys. Rev. A 75, 044301 (2007
Bunching Transitions on Vicinal Surfaces and Quantum N-mers
We study vicinal crystal surfaces with the terrace-step-kink model on a
discrete lattice. Including both a short-ranged attractive interaction and a
long-ranged repulsive interaction arising from elastic forces, we discover a
series of phases in which steps coalesce into bunches of n steps each. The
value of n varies with temperature and the ratio of short to long range
interaction strengths. We propose that the bunch phases have been observed in
very recent experiments on Si surfaces. Within the context of a mapping of the
model to a system of bosons on a 1D lattice, the bunch phases appear as quantum
n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
- …
