3,115 research outputs found
The Spin Distribution of Fast Spinning Neutron Stars in Low Mass X-Ray Binaries: Evidence for Two Sub-Populations
We study the current sample of rapidly rotating neutron stars in both
accreting and non-accreting binaries in order to determine whether the spin
distribution of accreting neutron stars in low-mass X-ray binaries can be
reconciled with current accretion torque models. We perform a statistical
analysis of the spin distributions and show that there is evidence for two
sub-populations among low-mass X-ray binaries, one at relatively low spin
frequency, with an average of ~300 Hz and a broad spread, and a peaked
population at higher frequency with average spin frequency of ~575 Hz. We show
that the two sub-populations are separated by a cut-point at a frequency of
~540 Hz. We also show that the spin frequency of radio millisecond pulsars does
not follow a log-normal distribution and shows no evidence for the existence of
distinct sub-populations. We discuss the uncertainties of different accretion
models and speculate that either the accreting neutron star cut-point marks the
onset of gravitational waves as an efficient mechanism to remove angular
momentum or some of the neutron stars in the fast sub-population do not evolve
into radio millisecond pulsars.Comment: Submitted to Ap
Model and Reinforcement Learning for Markov Games with Risk Preferences
We motivate and propose a new model for non-cooperative Markov game which
considers the interactions of risk-aware players. This model characterizes the
time-consistent dynamic "risk" from both stochastic state transitions (inherent
to the game) and randomized mixed strategies (due to all other players). An
appropriate risk-aware equilibrium concept is proposed and the existence of
such equilibria is demonstrated in stationary strategies by an application of
Kakutani's fixed point theorem. We further propose a simulation-based
Q-learning type algorithm for risk-aware equilibrium computation. This
algorithm works with a special form of minimax risk measures which can
naturally be written as saddle-point stochastic optimization problems, and
covers many widely investigated risk measures. Finally, the almost sure
convergence of this simulation-based algorithm to an equilibrium is
demonstrated under some mild conditions. Our numerical experiments on a two
player queuing game validate the properties of our model and algorithm, and
demonstrate their worth and applicability in real life competitive
decision-making.Comment: 38 pages, 6 tables, 5 figure
Stochastic L-BFGS: Improved Convergence Rates and Practical Acceleration Strategies
We revisit the stochastic limited-memory BFGS (L-BFGS) algorithm. By
proposing a new framework for the convergence analysis, we prove improved
convergence rates and computational complexities of the stochastic L-BFGS
algorithms compared to previous works. In addition, we propose several
practical acceleration strategies to speed up the empirical performance of such
algorithms. We also provide theoretical analyses for most of the strategies.
Experiments on large-scale logistic and ridge regression problems demonstrate
that our proposed strategies yield significant improvements vis-\`a-vis
competing state-of-the-art algorithms
The enigmatic spin evolution of PSR J0537-6910: r-modes, gravitational waves and the case for continued timing
We discuss the unique spin evolution of the young X-ray pulsar PSR
J0537-6910, a system in which the regular spin down is interrupted by glitches
every few months. Drawing on the complete timing data from the Rossi X-ray
Timing Explorer (RXTE, from 1999-2011), we argue that a trend in the
inter-glitch behaviour points to an effective braking index close to ,
much larger than expected. This value is interesting because it would accord
with the neutron star spinning down due to gravitational waves from an unstable
r-mode. We discuss to what extent this, admittedly speculative, scenario may be
consistent and if the associated gravitational-wave signal would be within
reach of ground based detectors. Our estimates suggest that one may, indeed, be
able to use future observations to test the idea. Further precision timing
would help enhance the achievable sensitivity and we advocate a joint observing
campaign between the Neutron Star Interior Composition ExploreR (NICER) and the
LIGO-Virgo network.Comment: 10 pages, 4 figures, emulate ApJ forma
- …
