21,811 research outputs found

    Design diversity: an update from research on reliability modelling

    Get PDF
    Diversity between redundant subsystems is, in various forms, a common design approach for improving system dependability. Its value in the case of software-based systems is still controversial. This paper gives an overview of reliability modelling work we carried out in recent projects on design diversity, presented in the context of previous knowledge and practice. These results provide additional insight for decisions in applying diversity and in assessing diverseredundant systems. A general observation is that, just as diversity is a very general design approach, the models of diversity can help conceptual understanding of a range of different situations. We summarise results in the general modelling of common-mode failure, in inference from observed failure data, and in decision-making for diversity in development.

    Spin-axion coupling

    Get PDF
    We establish a new covariant phenomenological model, which describes an influence of pseudoscalar (axion) field on spins of test massive particles. The model includes general relativistic equations of particle motion and spin evolution in background pseudoscalar (axion), electromagnetic and gravitational fields. It describes both the direct spin-axion coupling of the gradient type and indirect spin-axion interaction mediated by electromagnetic fields. Special attention is paid to the direct spin-axion coupling caused by the gradient of the pseudoscalar (axion) field. We show that it describes a spin precession, when the pseudoscalar (axion) field is inhomogeneous and/or non-stationary. Applications of the model, which correspond to the three types of four-vectors attributed to the gradient of the pseudoscalar (axion) field (time-like, space-like, and null), are considered in detail. These are the spin precessions induced by relic cosmological axions, axions distributed around spherically symmetric static objects, and axions in a gravitational wave field, respectively. We discuss features of the obtained exact solutions and some general properties of the axionically induced spin rotation.Comment: 15 pages; replaced with the version accepted for publication in Phys. Rev. D; new Subsection IVB and 13 references are adde
    corecore