82,374 research outputs found
Apparatus ad method for quiescent containerless processing of high temperature metals and alloys in low gravity
The electron bombardment furnace consists of two confinement grid sections which may be moved and separated from each other. Inside the bombardment furnace, a tungsten element is enclosed. The material specimen is located within the tungsten element and grounded by means of grounded support wires connected to the respective sections of the furnace. The material specimen is supported on the ground wires and heated by electron bombardment until melt occurs. The furnace sections are separated in opposite directions causing the ground wires to pull from the surfaces of the specimen, leaving the specimen freely suspended in the process chamber without the action of external forces. The specimen remains in its melt condition in the processing chamber where it can be undercooled without external forces acting on the specimen, which would cause dynamic nucleation
Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls
An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio
Filling the Ranks: Manpower in the Canadian Expeditionary Force, 1914-1918 (Book Review) by Richard Holt
Review of Filling the Ranks: Manpower in the Canadian Expeditionary Force, 1914-1918 by Richard Holt
Pioneer Venus spacecraft charging model
Five environmental models were constructed to represent the solar wind and the upper, middle, and lower ionosphere of Venus. The spacecraft structure was modeled with over 140 passive electrical elements representing structural elements of the spacecraft. Electron, ion, secondary electron, and photocurrents to the spacecraft from the plasma were calculated, ignoring sheath effects. In all but one case, potentials of interest were less than 1 volt. Potential differences between widely separated points on the equipment shelf were less than 1 mV. The one area of concern is the solar panel potential when the orbiter is passing through the bowshock region
D-touch: A Consumer-Grade Tangible Interface Module and Musical Applications
We define a class of tangible media applications that can be implemented on consumer-grade personal computers. These applications interpret user manipulation of physical objects in a restricted space and produce unlocalized outputs. We propose a generic approach to the implementation of such interfaces using flexible fiducial markers, which identify objects to a robust and fast video-processing algorithm, so they can be recognized and tracked in real time. We describe an implementation of the technology, then report two new, flexible music performance applications that demonstrate and validate it
Mars Mariner 4 - Identification of some Martian surface features
Martian surface features identified from photographs by Mariner 4 space prob
Single wall penetration equations
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests
A cooled avalanche photodiode with high photon detection probability
An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed
- …
