713 research outputs found
Short-lived climate forcers from current shipping and petroleum activities in the Arctic
Emissions of short-lived climate forcers (SLCF) in the Arctic region are expected to increase, notably from shipping and petroleum extraction. We here discuss changes in atmospheric SLCF concentrations and resulting radiative forcing (RF) from present day shipping and petroleum activities in the Arctic. The three-dimensional chemistry transport OsloCTM2 and a state of the art radiative forcing model are used, based on a coherent dataset of present day Arctic emissions. We find that the net RF of SLCF of shipping in the Arctic region is negative, mainly due to the direct and indirect RF effects of sulphate emissions, while the net RF of SLCF of petroleum extraction is positive, mainly due to the effects of black carbon aerosols in the air and deposited on snow. Strong seasonal variations of the sensitivities to emissions are found. In terms of annual mean values we find that the Arctic sensitivities to SLCF is similar to global average sensitivities. One exception to this is the stronger snow/ice albedo effect from BC emissions
Recommended from our members
Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions
Predictions of temperature and precipitation responses to changes in the anthropogenic emissions of climate forcers require the quantification of the radiative forcing exerted by those changes. This task is particularly difficult for near-term climate forcers like aerosols, methane, and ozone precursors because their short atmospheric lifetimes cause regionally and temporally inhomogeneous radiative forcings. This study quantifies specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, for eight near-term climate forcers as a function of their source regions and the season of emission by using dedicated simulations by four general circulation and chemistry-transport models. Although differences in the representation of atmospheric chemistry and radiative processes in different models impede the creation of a uniform dataset, four distinct findings can be highlighted. Firstly, specific radiative forcing for sulfur dioxide and organic carbon are stronger when aerosol–cloud interactions are taken into account. Secondly, there is a lack of agreement on the sign of the specific radiative forcing of volatile organic compound perturbations, suggesting they are better avoided in climate mitigation strategies. Thirdly, the strong seasonalities of the specific radiative forcing of most forcers allow strategies to minimise positive radiative forcing based on the timing of emissions. Finally, European and shipping emissions exert stronger aerosol specific radiative forcings compared to East Asia where the baseline is more polluted. This study can therefore form the basis for further refining climate mitigation options based on regional and seasonal controls on emissions. For example, reducing summertime emissions of black carbon and wintertime emissions of sulfur dioxide in the more polluted regions is a possible way to improve air quality without weakening the negative radiative forcing of aerosols
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
Efficacy of climate forcings in PDRMIP models
Quantifying the efficacy of different climate forcings is important for understanding the real-world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near-surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy-induced bias of +/- 0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend
Recent Results from the BRAHMS Experiment
We present recent results obtained by the BRAHMS experiment at the
Relativistic Heavy Ion Collider (RHIC) for the systems of Au + Au and Cu + Cu
at \rootsnn{200} and at 62.4 GeV, and p + p at \rootsnn{200}. Nuclear
modification factors for Au + Au and Cu + Cu collisions are presented. Analysis
of anti-particle to particle ratios as a function of rapidity and collision
energy reveal that particle populations at the chemical freeze-out stage for
heavy-ion reactions at and above SPS energies are controlled by the baryon
chemical potential. From the particle spectra we deduce significant radial
expansion ( 0.75), as expected for systems created with a large
initial energy density. We also measure the elliptic flow parameter
versus rapidity and \ptn. We present rapidity dependent ratios within
for Au + Au and Cu + Cu at \rootsnn{200}. \Raa is found to increase
with decreasing collision energy, decreasing system size, and when going
towards more peripheral collisions. However, \Raa shows only a very weak
dependence on rapidity (for ), both for pions and protons.Comment: 16 pages and 14 figures, proceedings for plenary talk at Quark Matter
2005, Budapest, Hungar
Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV
We report on a study of the transverse momentum dependence of nuclear
modification factors for charged hadrons produced in deuteron + gold
collisions at GeV, as a function of collision centrality
and of the pseudorapidity () of the produced hadrons. We
find significant and systematic decrease of with increasing rapidity.
The midrapidity enhancement and the forward rapidity suppression are more
pronounced in central collisions relative to peripheral collisions. These
results are relevant to the study of the possible onset of gluon saturation at
RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been
updated, and several changes made to the tex
Nuclear Stopping in Au+Au Collisions at sqrt(sNN) = 200 GeV
Transverse momentum spectra and rapidity densities, dN/dy, of protons,
anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at
sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the
rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from
mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at
dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at
this energy exhibit a high degree of transparency and that the linear scaling
of rapidity loss with rapidity observed at lower energies is broken. The energy
loss per participant nucleon is estimated to be 73 +- 6 GeV.Comment: 5 pages, 4 figure
Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For
the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and
N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively,
relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair
of participant nucleons is found to increase from peripheral to central
collisions around mid-rapidity. These results constrain current models of
particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to
show corrected calculation of and ; final version accepted for
publicatio
- …
