364 research outputs found
Measuring Temperature Gradients over Nanometer Length Scales
When a quantum dot is subjected to a thermal gradient, the temperature of
electrons entering the dot can be determined from the dot's thermocurrent if
the conductance spectrum and background temperature are known. We demonstrate
this technique by measuring the temperature difference across a 15 nm quantum
dot embedded in a nanowire. This technique can be used when the dot's energy
states are separated by many kT and will enable future quantitative
investigations of electron-phonon interaction, nonlinear thermoelectric
effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
Surface Transitions for Confined Associating Mixtures
Thin films of binary mixtures that interact through isotropic forces and
directionally specific "hydrogen bonding" are considered through Monte Carlo
simulations. We show, in good agreement with experiment, that the single phase
of these mixtures can be stabilized or destabilized on confinement. These
results resolve a long standing controversy, since previous theories suggest
that confinement only stabilizes the single phase of fluid mixtures.Comment: LaTeX document, documentstyle[aps,preprint]{revtex}, psfig.sty,
bibtex, 13 pages, 4 figure
Spin-dependent thermoelectric transport through double quantum dots
We study thermoelectric transport through double quantum dots system with
spin-dependent interdot coupling and ferromagnetic electrodes by means of the
non-equilibrium Green function in the linear response regime. It is found that
the thermoelectric coefficients are strongly dependent on the splitting of
interdot coupling, the relative magnetic configurations and the spin
polarization of leads. In particular, the thermoelectric efficiency can achieve
considerable value in parallel configuration when the effective interdot
coupling and tunnel coupling between QDs and the leads for spin-down electrons
are small. Moreover, the thermoelectric efficiency increases with the intradot
Coulomb interactions increasing and can reach very high value at an appropriate
temperature. In the presence of the magnetic field, the spin accumulation in
leads strongly suppresses the thermoelectric efficiency and a pure spin
thermopower can be obtained.Comment: 5 figure
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Rectification of electronic heat current by a hybrid thermal diode
We report the realization of an ultra-efficient low-temperature hybrid heat
current rectifier, thermal counterpart of the well-known electric diode. Our
design is based on a tunnel junction between two different elements: a normal
metal and a superconducting island. Electronic heat current asymmetry in the
structure arises from large mismatch between the thermal properties of these
two. We demonstrate experimentally temperature differences exceeding mK
between the forward and reverse thermal bias configurations. Our device offers
a remarkably large heat rectification ratio up to and allows its
prompt implementation in true solid-state thermal nanocircuits and
general-purpose electronic applications requiring energy harvesting or thermal
management and isolation at the nanoscale.Comment: 8 pages, 6 color figure
Electrical and thermoelectrical transport in Dirac fermions through a quantum dot
We investigate the conductance and thermopower of massless Dirac fermions
through a quantum dot using a pseudogap Anderson model in the non-crossing
approximation. When the Fermi level is at the Dirac point, the conductance has
a cusp where the thermopower changes its sign. When the Fermi level is away
from the Dirac point, the Kondo temperature illustrates a quantum impurity
transition between an asymmetric strong coupling Kondo state and a localized
moment state. The conductance shows a peak near this transition and reaches the
unitary limit at low temperatures. The magnitude of the thermopower exceeds
, and the thermoelectric figure of merit exceeds unity.Comment: 5 pages, 4 figure
Harmonic Sums and Mellin Transforms up to two-loop Order
A systematic study is performed on the finite harmonic sums up to level four.
These sums form the general basis for the Mellin transforms of all individual
functions of the momentum fraction emerging in the quantities of
massless QED and QCD up to two--loop order, as the unpolarized and polarized
splitting functions, coefficient functions, and hard scattering cross sections
for space and time-like momentum transfer. The finite harmonic sums are
calculated explicitly in the linear representation. Algebraic relations
connecting these sums are derived to obtain representations based on a reduced
set of basic functions. The Mellin transforms of all the corresponding Nielsen
functions are calculated.Comment: 44 pages Latex, contract number adde
Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation
Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. © 2014 Keyel et al
Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au
We report the observation and physical characterization of the possible dwarf planet 2014. UZ224 ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 au. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an r-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140 year orbit has (a, e, i)=(109 au, 0.65, 26 degrees.8). It will reach its perihelion distance of 38 au in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed follow-up observations with ALMA, using 3 hr of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. The signal is detected at 7 sigma significance, from which we determine a V-band albedo of 13.1(-2.4)(+3.3)(stat)sys percent and a diameter of 635(-61)(+57)(stat)(-39)(+32)(sys) km assuming a spherical body with uniform surface properties
Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1
Cells generate inflammatory responses to bacteria when pattern recognition receptors bind pathogen-associated molecules such as lipopolysaccharide. Cells may also respond to tissue damage by sensing damage-associated molecules. Postpartum bacterial infections of the bovine uterus cause endometritis but the risk of disease is increased by tissue trauma triggered by dystocia. Animals that suffered dystocia had increased concentrations of inflammatory mediators IL-8, IL-1β and IL-1α in vaginal mucus 3 weeks postpartum, but they also had more bacteria than normal animals. Ex vivo organ cultures of endometrium, endometrial cells and peripheral blood monocytes did not generate inflammatory responses to prototypical damage molecules, HMGB1 or hyaluronan, or to necrotic cells; although they secreted IL-6 and IL-8 in a concentration-dependent manner when treated with IL-1α. However, necrotic endometrial cells did not accumulate intracellular IL-1α or release IL-1α, except when pre-treated with lipopolysaccharide or bacteria. Endometrial cell inflammatory responses to IL-1α were dependent on the cognate receptor IL-1R1, and the receptor adaptor protein MyD88, and the inflammatory response to IL-1α was independent of the response to lipopolysaccharide. Rather than a typical damage-associated molecule, IL-1α acts to scale the inflammatory response in recognition that there is a combination of pathogen challenge followed by endometrial cell damage
- …
