5,148 research outputs found
A Combined Spitzer and Chandra Survey of Young Stellar Objects in the Serpens Cloud Core
We present Spitzer and Chandra observations of the nearby (~260 pc) embedded
stellar cluster in the Serpens Cloud Core. We observed, using Spitzer's IRAC
and MIPS instruments, in six wavelength bands from 3 to 70 , to detect
thermal emission from circumstellar disks and protostellar envelopes, and to
classify stars using color-color diagrams and spectral energy distributions
(SEDs). These data are combined with Chandra observations to examine the
effects of circumstellar disks on stellar X-ray properties. Young diskless
stars were also identified from their increased X-ray emission. We have
identified 138 YSOs in Serpens: 22 class 0/I, 16 flat spectrum, 62 class II, 17
transition disk, and 21 class III stars; 60 of which exhibit X-ray emission.
Our primary results are the following: 1.) ten protostars detected previously
in the sub-millimeter are detected at lambda < 24 microns, seven at lambda < 8
microns, 2.) the protostars are more closely grouped than more evolved YSOs
(median separation : ~0.024 pc, and 3.) the luminosity and temperature of the
X-ray emitting plasma around these YSOs does not show any significant
dependence on evolutionary class. We combine the infrared derived values of AK
and X-ray values of NH for 8 class III objects and find that the column density
of hydrogen gas per mag of extinctions is less than half the standard
interstellar value, for AK > 1. This may be the result of grain growth through
coagulation and/or the accretion of volatiles in the Serpens cloud core.Comment: 69 pages, 16 figures, accepted to ApJ. Higher Resolution Figures at:
http://www.cfa.harvard.edu/~ewinston
Spitzer observations of Bow Shocks and Outflows in RCW 38
We report Spitzer observations of five newly identified bow shocks in the
massive star-forming region RCW 38. Four are visible at IRAC wavelengths, the
fifth is visible only at 24 microns. Chandra X-ray emission indicates that
winds from the central O5.5 binary, IRS~2, have caused an outflow to the NE and
SW of the central subcluster. The southern lobe of hot ionised gas is detected
in X-rays; shocked gas and heated dust from the shock-front are detected with
Spitzer at 4.5 and 24 microns. The northern outflow may have initiated the
present generation of star formation, based on the filamentary distribution of
the protostars in the central subcluster. Further, the bow-shock driving star,
YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are
identified within this pillar at near- to mid-IR wavelengths.
We also report on IRAC 3.6 & 5.8 micron observations of the cluster
DBS2003-124, NE of RCW 38, where 33 candidate YSOs are identified. One star
associated with the cluster drives a parsec-scale jet. Two candidate HH objects
associated with the jet are visible at IRAC and MIPS wavelengths. The jet
extends over a distance of ~3 pc. Assuming a velocity of 100 km/s for the jet
material gives an age of about 30,000 years, indicating that the star (and
cluster) are likely to be very young, with a similar or possibly younger age
than RCW 38, and that star formation is ongoing in the extended RCW 38 region.Comment: 27 pages, 6 figures, accepted to Ap
IRAS 20050+2720: Anatomy of a young stellar cluster
IRAS 20050+2720 is young star forming region at a distance of 700 pc without
apparent high mass stars. We present results of our multiwavelength study of
IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS
and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages
are found. We characterize the distribution of young stellar objects (YSOs) in
this region using a minimum spanning tree (MST) analysis. We newly identify a
second cluster core, which consists mostly of class II objects, about 10 arcmin
from the center of the cloud. YSOs of earlier evolutionary stages are more
clustered than more evolved objects. The X-ray luminosity function (XLF) of
IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more
massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio
compared with the diffuse ISM.Comment: 15 pages, 12 figures, accepted by A
The Properties of X-ray Luminous Young Stellar Objects in the NGC 1333 and Serpens Embedded Clusters
We present Chandra X-ray data of the NGC 1333 embedded cluster, combining
these data with existing Chandra data, Sptizer photometry and ground based
spectroscopy of both the NGC 1333 & Serpens North clusters to perform a
detailed study of the X-ray properties of two of the nearest embedded clusters
to the Sun. In NGC 1333, a total of 95 cluster members are detected in X-rays,
of which 54 were previously identified with Spitzer. Of the Spitzer sources, we
detect 23% of the Class I protostars, 53% of the Flat Spectrum sources, 52% of
the Class II, and 50% of the Transition Disk YSOs. Forty-one Class III members
of the cluster are identified, bringing the total identified YSO population to
178. The X-ray Luminosity Functions (XLFs) of the NGC 1333 and Serpens clusters
are compared to each other and the Orion Nebula Cluster. Based on this
comparison, we obtain a new distance for the Serpens cluster of 360+22/-13 pc.
The X-ray luminosity was found to depend on the bolometric luminosity as in
previous studies of other clusters, and that Lx depends primarily on the
stellar surface area. In the NGC 1333 cluster, the Class III sources have a
somewhat higher X-ray luminosity for a given surface area. We also find
evidence in NGC 1333 for a jump in the X-ray luminosity between spectral types
of M0 and K7, we speculate that this may result from the presence of radiative
zones in the K-stars. The gas column density vs. extinction in the NGC 1333 was
found to be N_H = 0.89 +/- 0.13 x 10^22 A_K, this is lower than expected of the
standard ISM but similar to that found previously in the Serpens Cloud Core.Comment: 58 pages, 14 figures, accepted by A
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
- …
