49 research outputs found

    Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-FFT Maxwell solver and a local charge conserving current deposit

    Get PDF
    A hybrid Maxwell solver for fully relativistic and electromagnetic (EM) particle-in-cell (PIC) codes is described. In this solver, the EM fields are solved in kk space by performing an FFT in one direction, while using finite difference operators in the other direction(s). This solver eliminates the numerical Cerenkov radiation for particles moving in the preferred direction. Moreover, the numerical Cerenkov instability (NCI) induced by the relativistically drifting plasma and beam can be eliminated using this hybrid solver by applying strategies that are similar to those recently developed for pure FFT solvers. A current correction is applied for the charge conserving current deposit to correctly account for the EM calculation in hybrid Yee-FFT solver. A theoretical analysis of the dispersion properties in vacuum and in a drifting plasma for the hybrid solver is presented, and compared with PIC simulations with good agreement obtained. This hybrid solver is applied to both 2D and 3D Cartesian and quasi-3D (in which the fields and current are decomposed into azimuthal harmonics) geometries. Illustrative results for laser wakefield accelerator simulation in a Lorentz boosted frame using the hybrid solver in the 2D Cartesian geometry are presented, and compared against results from 2D UPIC-EMMA simulation which uses a pure spectral Maxwell solver, and from OSIRIS 2D lab frame simulation using the standard Yee solver. Very good agreement is obtained which demonstrates the feasibility of using the hybrid solver for high fidelity simulation of relativistically drifting plasma with no evidence of the numerical Cerenkov instability

    A multi-sheath model for highly nonlinear plasma wakefields

    Full text link
    An improved description for nonlinear plasma wakefields with phase velocities near the speed of light is presented and compared against fully kinetic particle-in-cell simulations. These wakefields are excited by intense particle beams or lasers pushing plasma electrons radially outward, creating an ion bubble surrounded by a sheath of electrons characterized by the source term S1enp(ρJz/c)S \equiv -\frac{1}{en_p}(\rho-J_z/c) where ρ\rho and JzJ_z are the charge and axial current densities. Previously, the sheath source term was described phenomenologically with a positive-definite function, resulting in a positive definite wake potential. In reality, the wake potential is negative at the rear of the ion column which is important for self-injection and accurate beam loading models. To account for this, we introduce a multi-sheath model in which the source term, SS, of the plasma wake can be negative in regions outside the ion bubble. Using this model, we obtain a new expression for the wake potential and a modified differential equation for the bubble radius. Numerical results obtained from these equations are validated against particle-in-cell simulations for unloaded and loaded wakes. The new model provides accurate predictions of the shape and duration of trailing bunch current profiles that flatten plasma wakefields. It is also used to design a trailing bunch for a desired longitudinally varying loaded wakefield. We present beam loading results for laser wakefields and discuss how the model can be improved for laser drivers in future work. Finally, we discuss differences between the predictions of the multi- and single-sheath models for beam loading.Comment: 25 pages, 15 figure
    corecore