6,454 research outputs found

    Fragmentation and Hadronization

    Get PDF
    Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.Comment: 31 pages, 33 figures. Plenary talk at XIX International Symposium on Lepton and Photon Interactions at High Energies, Stanford, August 199

    Combining QCD Matrix Elements and Parton Showers

    Get PDF
    A new method for combining QCD matrix elements and parton showers in Monte Carlo simulations of hadronic final states is outlined. The aim is to provide at least a leading-order description of all hard multi-jet configurations together with jet fragmentation to next-to-leading logarithmic accuracy, while avoiding the most serious problems of double counting.Comment: 6 pages, 8 figures. Talk at XXXV Rencontres de Moriond, Les Arcs, France, March 200

    Black holes at accelerators

    Get PDF
    In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions

    The MC@NLO 3.2 Event Generator

    Full text link
    This is the user's manual of MC@NLO 3.2. This package is a practical implementation, based upon the HERWIG event generator, of the MC@NLO formalism, which allows one to incorporate NLO QCD matrix elements consistently into a parton shower framework. Processes available in this version include the hadroproduction of single vector and Higgs bosons, vector boson pairs, heavy quark pairs, single top, lepton pairs, and Higgs bosons in association with a W or Z. Spin correlations in decays are included for all processes except ttbar, single-t, ZZ, and WZ production. This document is self-contained, but we emphasise the main differences with respect to previous versions.Comment: 23 pages Late

    A unit commitment study of the application of energy storage toward the integration of renewable generation

    Get PDF
    To examine the potential benefits of energy storage in the electric grid, a generalized unit commitment model of thermal generating units and energy storage facilities is developed. Three different storage scenarios were tested—two without limits to total storage assignment and one with a constrained maximum storage portfolio. Given a generation fleet based on the City of Austin’s renewable energy deployment plans, results from the unlimited energy storage deployment scenarios studied show that if capital costs are ignored, large quantities of seasonal storage are preferred. This operational approach enables storage of plentiful wind generation during winter months that can then be dispatched during high cost peak periods in the summer. These two scenarios yielded 70millionand70 million and 94 million in yearly operational cost savings but would cost hundreds of billions to implement. Conversely, yearly cost reductions of $40 million can be achieved with one compressed air energy storage facility and a small set of electrochemical storage devices totaling 13GWh of capacity. Similarly sized storage fleets with capital costs, service lifetimes, and financing consistent with these operational cost savings can yield significant operational benefit by avoiding dispatch of expensive peaking generators and improving utilization of renewable generation throughout the year. Further study using a modified unit commitment model can help to clarify optimal storage portfolios, reveal appropriate market participation approaches, and determine the optimal siting of storage within the grid.Mechanical Engineerin

    Neurospora experiment P-1037 Quarterly progress report, 16 Dec. 1966 - 15 Mar. 1967

    Get PDF
    Tabulated data on genetic effects of strontium 85 gamma radiation on Neurospor

    Effects of QCD radiation on inclusive variables for determining the scale of new physics at hadron colliders

    Get PDF
    We examine the effects of QCD initial-state radiation on a class of quantities, designed to probe the mass scale of new physics at hadron colliders, which involve longitudinal as well as transverse final-state momenta. In particular, we derive universal functions that relate the invariant mass and energy distribution of the visible part of the final state to that of the underlying hard subprocess. Knowledge of this relationship may assist in checking hypotheses about new processes, by providing additional information about their scales. We compare our results with those of Monte Carlo studies and find good general agreement
    corecore