298 research outputs found

    Pinning of stripes by local structural distortions in cuprate high-Tc superconductors

    Full text link
    We study the spin-density wave (stripe) instability in lattices with mixed low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal symmetry. Within an explicit mean-field model it is shown how local LTT regions act as pinning centers for static stripe formation. We calculate the modulations in the local density of states near these local stripe regions and find that mainly the coherence peaks and the van Hove singularity (VHS) are spatially modulated. Lastly, we use the real-space approach to simulate recent tunneling data in the overdoped regime where the VHS has been detected by utilizing local normal state regions.Comment: Conference proceedings for Stripes1

    Signatures of modulated pair interaction in cuprate superconductors

    Full text link
    Recent low-temperature scanning tunnelling spectroscopy experiments on the surface of BSCCO-2212 have revealed a strong positive correlation between the position of localized resonances at -960 meV identified with interstitial oxygen dopants and the size of the local spectral gap. We review efforts to understand these correlations within a model where the dopants modulate the pair interaction on an atomic scale. We provide further evidence for this model by comparing the correlations between the dopants and the local density of states with experimental results.Comment: 4 pages, 2 figures, submitted to M2S-HTSC VIII, Dresden 200

    Two nonmagnetic impurities in the DSC and DDW state of the cuprate superconductors as a probe for the pseudogap

    Full text link
    The quantum interference between two nonmagnetic impurities is studied numerically in both the d-wave superconducting (DSC) and the d-density wave (DDW) state. In all calculations we include the tunnelling through excited states from the CuO2_2 planes to the BiO layer probed by the STM tip. Compared to the single impurity case, a systematic study of the modulations in the two-impurity local density of states can distinguish between the DSC or DDW states. This is important if the origin of the pseudogap phase is caused by preformed pairs or DDW order. Furthermore, in the DSC state the study of the LDOS around two nonmagnetic impurities provide further tests for the potential scattering model versus more strongly correlated models.Comment: 6 pages, 6 figure

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    Andreev Bound States at the Interface of Antiferromagnets and d-wave Superconductors

    Full text link
    We set up a simple transfer matrix formalism to study the existence of bound states at interfaces and in junctions between antiferromagnets and d-wave superconductors. The well-studied zero energy mode at the {110} interface between an insulator and a d-wave superconductor is spin split when the insulator is an antiferromagnet. This has as a consequence that any competing interface induced superconducting order parameter that breaks the time reversal symmetry needs to exceed a critical value before a charge current is induced along the interface.Comment: 4 pages, 3 figure

    Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?

    Full text link
    The c-axis tunneling matrix of high-Tc superconductors is shown to depend strongly on the in-plane momentum of electrons and vanish along the four nodal lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix suppresses completely the contribution of the most extended quasiparticles in the vortex core to the c-axis tunneling current and leads to a spectrum similar to that of a nodeless superconductor. Our results give a natural explanation of the absence of the zero bias peak as well as other features observed in the vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev

    Checkerboard local density of states in striped domains pinned by vortices

    Get PDF
    Within a Green's function formalism we calculate the electronic structure around static extended magnetic and non-magnetic perturbations in a d-wave superconductor. In partucular, we discuss recent elastic neutron scattering and scanning tunneling experiments on High-T_c cuprates exposed to an applied magnetic field. A physical picture consisting of antiferromagnetic vortex cores operating as pinning centers for surrounding stripes is qualitatively consistent with the neutron data provided the stripes have the usual antiphase modulation. The low energy electronic structure in such a region reveals a checkerboard interference pattern consistent with recent scanning tunneling experiments.Comment: 5 pages, 4 figure

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Self-trapping transition for nonlinear impurities embedded in a Cayley tree

    Full text link
    The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping transition is observed in each case. It is also observed that the transition is much sharper compared to the case of one-dimensional lattices. For each system, the critical values of χ\chi for the self-trapping transitions are found to obey a power-law behavior as a function of the connectivity KK of the Cayley tree.Comment: 6 pages, 7 fig
    corecore