43 research outputs found
The development of a scale of the Guttman Type for the assessment of mobility disability in multiple sclerosis
Objective: The aim of the study was to develop a valid and reliable unidimensional scale of the Guttman type for the assessment of mobility disability in multiple sclerosis (MS).
Subjects: Sixty-eight subjects with a definite diagnosis of MS participated.They were attending as outpatients at a MS unit at a District General Hospital. Thirty had the primary progressive pattern of disease, and 38 had the relapsing-remitting pattern.
Methods: Formal assessments used for neurological disability were inspected, and 14 test items of gross motor function were extracted and ordered according to two criteria. These were that actions progressed from lying, to sitting, to standing and walking tasks, and that they progressed from broader to narrower bases of support. All subjects carried out all test items which were scored as ‘pass’ or ‘fail’.
Analysis: Data were tested for internal consistency, reliability, inter item correlation, reproducibility and scalability. On the basis of the results, the items were re-ordered in rank, and reduced to eleven tests. The eleven item scale was re-analysed.
Results: Results showed that the scale had an internal consistency of 0.88 (alpha coefficient) and a coefficient of reproducibility (CR) of 0.95 and above for both MS subject groups. The coefficient of scalability (CS) for items was 0.78 for primary progressive subjects and 0.74 for the relapsing-remitting group. Reliability ranged from good (kappa = 0.49) for one item, to perfect for six items.
Conclusion: The scale was demonstrated to be a hierarchical scale of the Guttman type exhibiting homogeneous unidimensionality and good reliability. The high CR indicated that scores may be summed, and the very acceptable levels of CS indicated that the cumulative scores are meaningful within the defined concept of hierarchy used in this study
X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold
AbstractPseudouridine synthases catalyse the isomerisation of uridine to pseudouridine in structural RNA. The pseudouridine synthase TruD, that modifies U13 in tRNA, belongs to a recently identified and large family of pseudouridine synthases present in all kingdoms of life. We report here the crystal structure of Escherichia coli TruD at 2.0 Å resolution. The structure reveals an overall V-shaped molecule with an RNA-binding cleft formed between two domains: a catalytic domain and an insertion domain. The catalytic domain has a fold similar to that of the catalytic domains of previously characterised pseudouridine synthases, whereas the insertion domain displays a novel fold
