1,351 research outputs found
Nonlinear vortex light beams supported and stabilized by dissipation
We describe nonlinear Bessel vortex beams as localized and stationary
solutions with embedded vorticity to the nonlinear Schr\"odinger equation with
a dissipative term that accounts for the multi-photon absorption processes
taking place at high enough powers in common optical media. In these beams,
power and orbital angular momentum are permanently transferred to matter in the
inner, nonlinear rings, at the same time that they are refueled by spiral
inward currents of energy and angular momentum coming from the outer linear
rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative
vortex solitons, the existence of these vortex beams does not critically depend
on the precise form of the dispersive nonlinearities, as Kerr self-focusing or
self-defocusing, and do not require a balancing gain. They have been shown to
play a prominent role in "tubular" filamentation experiments with powerful,
vortex-carrying Bessel beams, where they act as attractors in the beam
propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new
solution to the problem of the stable propagation of ring-shaped vortex light
beams in homogeneous self-focusing Kerr media. A stability analysis
demonstrates that there exist nonlinear Bessel vortex beams with single or
multiple vorticity that are stable against azimuthal breakup and collapse, and
that the mechanism that renders these vortexes stable is dissipation. The
stability properties of nonlinear Bessel vortex beams explain the experimental
observations in the tubular filamentation experiments.Comment: Chapter of boo
Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags
Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means
New Higgs Production Mechanism in Composite Higgs Models
Composite Higgs models are only now starting to be probed at the Large Hadron
Collider by Higgs searches. We point out that new resonances, abundant in these
models, can mediate new production mechanisms for the composite Higgs. The new
channels involve the exchange of a massive color octet and single production of
new fermion resonances with subsequent decays into the Higgs and a Standard
Model quark. The sizable cross section and very distinctive kinematics allow
for a very clean extraction of the signal over the background with high
statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with
data collected during 2012 and up to 5 TeV after the energy upgrade to
TeV.Comment: 27 pages, 22 figures. V2: typos corrected, matches published versio
Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
Background
Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset, secure deduplication is an important preprocessing step.
Methods
We designed a secure protocol for the deduplication of horizontally partitioned datasets with deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory varied. Experiments were also performed on simulated microbiology datasets and data custodians connected through a local area network.
Results
The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N − 2 corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records. One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental results showed that the protocol is more efficient and scalable than previous protocols for the same problem.
Conclusions
The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy of patients and data custodians
The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Species
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction
Dopaminergic modulation of appetitive trace conditioning: the role of D1 receptors in medial prefrontal cortex
Rationale: Trace conditioning may provide a behavioural model suitable to examine the maintenance of ‘on line’ information and its underlying neural substrates.
Objectives: Experiment la was run to establish trace conditioning in a shortened procedure which would be suitable to test the effects of dopamine (DA) D1 receptor agents administered by microinjection directly into the brain. Experiment lb examined the effects of the DA D1 agonist SKF81297 and the DA D1 antagonist SCH23390 following systemic administration in pre-trained animals. Experiment 2 went on to test the effects of systemically administered SKF81297 on the acquisition of trace conditioning. In experiment 3, SKF81297 was administered directly in prelimbic (PL) and infralimbic (IL) sub-regions of medial prefrontal cortex (mPFC) to compare the role of different mPFC sub-regions.
Results: Whilst treatment with SCH23390 impaired motor responding and/or motivation, SKF81297 had relatively little effect in the pre-trained animals tested in experiment 1b. However, systemic SKF81297 depressed the acquisition function at the 2-s trace interval in experiment 2. Similarly, in experiment 3, SKF81297 (0.1 μg in 1.0 μl) microinjected into either PL or IL mPFC impaired appetitive conditioning at the 2-s trace interval.
Conclusions: Impaired trace conditioning under SKF81297 is likely to be mediated in part (but not exclusively) within the IL and PL mPFC sub-regions. The finding that trace conditioning was impaired rather than enhanced under SKF81297 provides further evidence for the inverse U-function which has been suggested to be characteristic of mPFC DA function
- …
