873 research outputs found
Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors.
Background IMGN901 is a CD56-targeting antibody-drug conjugate designed for tumor-selective delivery of the cytotoxic maytansinoid DM1. This phase 1 study investigated the safety, tolerability, pharmacokinetics, and preliminary activity of IMGN901 in patients with CD56-expressing solid tumors. Methods Patients were enrolled in cohorts of escalating IMGN901 doses, administered intravenously, on 3 consecutive days every 21 days. A dose-expansion phase accrued patients with small cell lung cancer (SCLC), Merkel cell carcinoma (MCC), or ovarian cancer. Results Fifty-two patients were treated at doses escalating from 4 to 94 mg/m(2)/day. The maximum tolerated dose (MTD) was determined to be 75 mg/m(2). Dose-limiting toxicities included fatigue, neuropathy, headache or meningitis-like symptoms, chest pain, dyspnea, and myalgias. In the dose-expansion phase (n = 45), seven patients received 75 mg/m(2) and 38 received 60 mg/m(2) for up to 21 cycles. The recommended phase 2 dose (RP2D) was established at 60 mg/m(2) during dose expansion. Overall, treatment-emergent adverse events (TEAEs) were experienced by 96.9 % of all patients, the majority of which were Grade 1 or 2. The most commonly reported Grade 3 or 4 TEAEs were hyponatremia and dyspnea (each 8.2 %). Responses included 1 complete response (CR), 1 clinical CR, and 1 unconfirmed partial response (PR) in MCC; and 1 unconfirmed PR in SCLC. Stable disease was seen for 25 % of all evaluable patients who received doses ≥60 mg/m(2). Conclusions The RP2D for IMGN901 of 60 mg/m(2) administered for 3 consecutive days every 3 weeks was associated with an acceptable tolerability profile. Objective responses were observed in patients with advanced CD56+ cancers
Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise
Corrected by: Erratum: Molecular Psychiatry (2016) 21, 1645–1645; doi:10.1038/mp.2016.57; published online 19 April 2016. Following publication of the above article, the authors noticed that the second author’s name was presented incorrectly. The author’s name should have appeared as M Fiatarone Singh. The publisher regrets the error.Physical and cognitive exercise may prevent or delay dementia in later life but the neural mechanisms underlying these therapeutic benefits are largely unknown. We examined structural and functional magnetic resonance imaging (MRI) brain changes after 6 months of progressive resistance training (PRT), computerized cognitive training (CCT) or combined intervention. A total of 100 older individuals (68 females, average age=70.1, s.d.±6.7, 55-87 years) with dementia prodrome mild cognitive impairment were recruited in the SMART (Study of Mental Activity and Resistance Training) Trial. Participants were randomly assigned into four intervention groups: PRT+CCT, PRT+SHAM CCT, CCT+SHAM PRT and double SHAM. Multimodal MRI was conducted at baseline and at 6 months of follow-up (immediately after training) to measure structural and spontaneous functional changes in the brain, with a focus on the hippocampus and posterior cingulate regions. Participants' cognitive changes were also assessed before and after training. We found that PRT but not CCT significantly improved global cognition (F(90)=4.1, P<0.05) as well as expanded gray matter in the posterior cingulate (Pcorrected <0.05), and these changes were related to each other (r=0.25, P=0.03). PRT also reversed progression of white matter hyperintensities, a biomarker of cerebrovascular disease, in several brain areas. In contrast, CCT but not PRT attenuated decline in overall memory performance (F(90)=5.7, P<0.02), mediated by enhanced functional connectivity between the hippocampus and superior frontal cortex. Our findings indicate that physical and cognitive training depend on discrete neuronal mechanisms for their therapeutic efficacy, information that may help develop targeted lifestyle-based preventative strategies.Molecular Psychiatry advance online publication, 22 March 2016; doi:10.1038/mp.2016.19.C Suo, M Fiatarone Singh, N Gates, W Wen, P Sachdev, H Brodaty, N Saigal, GC Wilson, J Meiklejohn, N Singh, BT Baune, M Baker, N Foroughi, Y Wang, Y Mavros, A Lampit, I Leung, and MJ Valenzuel
The interaction of bacterial pathogens with platelets.
In recent years, the frequency of serious cardiovascular infections such as endocarditis has increased, particularly in association with nosocomially acquired antibiotic-resistant pathogens. Growing evidence suggests a crucial role for the interaction of bacteria with human platelets in the pathogenesis of cardiovascular infections. Here, we review the nature of the interactions between platelets and bacteria, and the role of these interactions in the pathogenesis of endocarditis and other cardiovascular diseases
In vivo activity of the dual PI3Kδ and PI3Kγ inhibitor duvelisib against pediatric acute lymphoblastic leukemia xenografts
Background: Acute lymphoblastic leukemia (ALL) remains one of the most common causes of cancer-related mortality in children. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases, and aberrations in the PI3K pathway are associated with several hematological malignancies, including ALL. Duvelisib (Copiktra) is an orally available, small molecule dual inhibitor of PI3Kδ and PI3Kγ, that is Food and Drug Administration (FDA) approved for the treatment of relapsed/refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Here, we report the efficacy of duvelisib against a panel of pediatric ALL patient-derived xenografts (PDXs). Procedures: Thirty PDXs were selected for a single mouse trial based on PI3Kδ (PIK3CD) and PI3Kγ (PIK3CG) expression and mutational status. PDXs were grown orthotopically in NSG (NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb) mice, and engraftment was evaluated by enumerating the proportion of human versus mouse CD45+ cells (%huCD45+) in the peripheral blood. Treatment commenced when the %huCD45+ reached greater than or equal to 1%, and events were predefined as %huCD45+ greater than or equal to 25% or leukemia-related morbidity. Duvelisib was administered per oral (50 mg/kg, twice daily for 28 days). Drug efficacy was assessed by event-free survival and stringent objective response measures. Results: PI3Kδ and PI3Kγ mRNA expression was significantly higher in B-lineage than T-lineage ALL PDXs (p-values <.0001). Duvelisib was well-tolerated and reduced leukemia cells in the peripheral blood in four PDXs, but with only one objective response. There was no obvious relationship between duvelisib efficacy and PI3Kδ or PI3Kγ expression or mutation status, nor was the in vivo response to duvelisib subtype dependent. Conclusions: Duvelisib demonstrated limited in vivo activity against ALL PDXs
In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts
Background: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). Methods: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. Results: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. Conclusions: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
The CD123 antibody–drug conjugate pivekimab sunirine exerts profound activity in preclinical models of pediatric acute lymphoblastic leukemia
Antibody–drug conjugates (ADCs) combining monoclonal antibodies with cytotoxic payloads are a rapidly emerging class of immune-based therapeutics with the potential to improve the treatment of cancer, including children with relapse/refractory acute lymphoblastic leukemia (ALL). CD123, the α subunit of the interleukin-3 receptor, is overexpressed in ALL and is a potential therapeutic target. Here, we show that pivekimab sunirine (PVEK), a recently developed ADC comprising the CD123-targeting antibody, G4723A, and the cytotoxic payload, DGN549, was highly effective in vivo against a large panel of pediatric ALL patient-derived xenograft (PDX) models (n = 39). PVEK administered once weekly for 3 weeks resulted in a median event-free survival (EFS) of 57.2 days across all PDXs. CD123 mRNA and protein expression was significantly higher in B-lineage (n = 65) compared with T-lineage (n = 25) ALL PDXs (p < 0.0001), and mice engrafted with B-lineage PDXs achieved significantly longer EFS than those engrafted with T-lineage PDXs (p < 0.0001). PVEK treatment also resulted in significant clearance of human leukemia cells in hematolymphoid organs in mice engrafted with B-ALL PDXs. Notably, our results showed no direct correlation between CD123 expression and mouse EFS, indicating that CD123 is necessary but not sufficient for in vivo PVEK activity. Importantly, a PDX with very high CD123 cell surface expression but resistant to in vivo PVEK treatment, failed to internalize the G4723A antibody while remaining sensitive to the PVEK payload, DGN549, suggesting a novel mechanism of resistance. In conclusion, PVEK was highly effective against a large panel of B-ALL PDXs supporting its clinical translation for B-lineage pediatric ALL
Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages
Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), (10 1 ¯) , {110}, { 212 } , and type two (irrational) twin planes with rational shear directions in [ 0 1 ¯ 1 ¯ ] and [ 1 ¯ 1 ¯ 0 ]. SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts
Primary non Hodgkin's lymphoma of the lacrimal sac
<p>Abstract</p> <p>Background</p> <p>Primary Non Hodgkin's Lymphoma (NHL) of the lacrimal sac is rare.</p> <p>Methods</p> <p>The clinical features of a 78 year old female who presented with epiphora and swelling of the left lacrimal sac are described.</p> <p>Results</p> <p>Computerised tomography showed a mass involving the left lacrimal sac. Histopathological examination revealed a diffuse large B cell NHL. Immunohistological examination demonstrated B cell origin. Chemotherapy could not be administered due to co morbid conditions. The patient was treated with radiotherapy to a dose of 45 Gy in 25 fractions. Patient is disease free and on follow up after 36 months.</p> <p>Conclusion</p> <p>Primary radiotherapy is a treatment option with curative potential for localized NHL of the lacrimal sac and may be considered in patients who cannot tolerate appropriate chemotherapy.</p
Propagation of Epileptiform Events across the Corpus Callosum in a Cingulate Cortical Slice Preparation
We report on a novel mouse in vitro brain slice preparation that contains intact callosal axons connecting anterior cingulate cortices (ACC). Callosal connections are demonstrated by the ability to regularly record epileptiform events between hemispheres (bilateral events). That the correlation of these events depends on the callosum is demonstrated by the bisection of the callosum in vitro. Epileptiform events are evoked with four different methods: (1) bath application of bicuculline (a GABA-A antagonist); (2) bicuculline+MK801 (an NMDA receptor antagonist), (3) a zero magnesium extracellular solution (0Mg); (4) focal application of bicuculline to a single cortical hemisphere. Significant increases in the number of epileptiform events, as well as increases in the ratio of bilateral events to unilateral events, are observed during bath applications of bicuculline, but not during applications of bicuculline+MK-801. Long ictal-like events (defined as events >20 seconds) are only observed in 0Mg. Whole cell patch clamp recordings of single neurons reveal strong feedforward inhibition during focal epileptiform events in the contralateral hemisphere. Within the ACC, we find differences between the rostral areas of ACC vs. caudal ACC in terms of connectivity between hemispheres, with the caudal regions demonstrating shorter interhemispheric latencies. The morphologies of many patch clamped neurons show callosally-spanning axons, again demonstrating intact callosal circuits in this in vitro preparation
- …
