378 research outputs found
Loneliness, social support and cardiovascular reactivity to laboratory stress
Self-reported or explicit loneliness and social support have been inconsistently associated with cardiovascular reactivity (CVR) to stress. The present study aimed to adapt an implicit measure of loneliness, and use it alongside the measures of explicit loneliness and social support, to investigate their correlations with CVR to laboratory stress. Twenty-five female volunteers aged between 18 and 39 years completed self-reported measures of loneliness and social support, and an Implicit Association Test (IAT) of loneliness. The systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) reactivity indices were measured in response to psychosocial stress induced in the laboratory. Functional support indices of social support were significantly correlated with CVR reactivity to stress. Interestingly, implicit, but not explicit, loneliness was significantly correlated with DBP reactivity after one of the stressors. No associations were found between structural support and CVR indices. Results are discussed in terms of validity of implicit versus explicit measures and possible factors that affect physiological outcomes
Formation of unique nanocrystalline Cu-In-Se bulk pn homojunctions for opto-electronic devices
Semiconductor pn junctions, integrated in optoelectronic devices require high quality crystals, made by expensive, technically difficult processes. Bulk heterojunction (BHJ) structures offer practical alternatives to circumvent the cost, flexibility and scale-up challenges of crystalline planar pn junctions. Fabrication methods for the current organic or inorganic BHJ structures invariably create interface mismatch and low doping issues. To overcome such issues, we devised an innovative approach, founded on novel inorganic material system that ensued from single-step electrodeposited copper-indium-selenide compounds. Surface analytical microscopies and spectroscopies reveal unusual phenomena, electro-optical properties and quantum effects. They support the formation of highly-ordered, sharp, abrupt 3-dimensional nanoscale pn BHJs that facilitate efficient charge carrier separation and transport, and essentially perform the same functions as crystalline planar pn junctions. This approach offers a low-cost processing platform to create nanocrystalline films, with the attributes necessary for efficient BHJ operation. It allows roll-to-roll processing of flexible devices in simple thin-film form factor.Partial funding for this work is provided by customers of Xcel Energy through a grant from the Renewable Development Fund. The authors gratefully acknowledge sample preparation, analytical contributions and useful discussions with Sharmila Menezes and Yan Li (InterPhases Solar); Senli Guo (Brucker Nano); Terrence McGuckin (Ephemeron Labs); and Nassim Rahimi (HORIBA Scientific). A. Samantilleke acknowledges Prof. L. M. Peter (Bath University, UK) for introducing EER technique
Low-dose adenosine stress echocardiography: Detection of myocardial viability
OBJECTIVE: The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. BACKGROUND: Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. METHODS: Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. RESULTS: Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. CONCLUSION: Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability
Operant Sensation Seeking Requires Metabotropic Glutamate Receptor 5 (mGluR5)
Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior
Charge Carrier Dynamics in Polymer Solar Cells
Charge Carrier Dynamics in Polymer Solar Cells, Chapter 6, Organic Solar Cells, Energetic and Nanostructural Design, 2021This chapter describes charge generation and recombination dynamics in polymer solar cells. Photovoltaic conversion mechanism in polymer solar cells ranges from femtoseconds to microseconds on a temporal scale. Therefore, time-resolved optoelectronic measurements are powerful tools for studying elementary processes in the photovoltaic conversion mechanism. First, the charge generation dynamics studied by transient absorption spectroscopy is described in order to discuss how polymer crystallinity and energy offsets at the interface have an impact on the charge dissociation in polymer/fullerene blends. In addition, the charge generation dynamics in ternary blends is also described. Next, the bimolecular recombination of free charge carriers studied by transient absorption spectroscopy and transient photovoltage and photocurrent measurements is discussed. Finally, challenging issues to be solved in polymer solar cells are discussed for further improvements in photovoltaic performance
Chromatin remodelling complex dosage modulates transcription factor function in heart development
Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis is not known. In this study, we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20 and Nkx2–5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that the relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac gene promoters in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs
Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls
The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis × log2 Pb) < 0.05). These genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded
Deciphering Ownership of Family Business Groups
Family business groups are highly complex ownership structures. In this chapter, we suggest that owning a family business group needs to create benefits that overcome the transaction costs and ownership costs emerging from the complexities of ownership. We separate the effects of ownership into two main categories: the legal effects and the emotional effects. In terms of legal ownership, the control over the business and its resources suggests a freedom to operate the businesses and claims on their resources, to append new businesses to the FBG, to organize their relationships between the separate businesses and to exit from the businesses at will. The emotional benefits include the service of the owners’ self-deserving interests, positive effects on the family cohesion and togetherness and growth in social recognition and status. It seems that ownership along with its multiple effects may play a more vital role in explaining the development of family business groups than has been previously thought.Post-print / Final draf
Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells
In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after “wiring” them with an osmium redox polymer [Os(4,4′-dimethyl-2,2′-bipyridine)2(PVI)10Cl]+ on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer “wired” GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 ± 17, 370 ± 24, and 389 ± 19 μA cm−2 for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 μA mM−1 for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars
- …
