1,723 research outputs found
Exceptional sperm cooperation in the wood mouse
Spermatozoa from a single male will compete for fertilization of ova with spermatozoa from another male when present in the female reproductive tract at the same time. Close genetic relatedness predisposes individuals towards altruism, and as haploid germ cells of an ejaculate will have genotypic similarity of 50%, it is predicted that spermatozoa may display cooperation and altruism to gain an advantage when inter-male sperm competition is intense. We report here the probable altruistic behaviour of spermatozoa in an eutherian mammal. Spermatozoa of the common wood mouse, Apodemus sylvaticus, displayed a unique morphological transformation resulting in cooperation in distinctive aggregations or 'trains' of hundreds or thousands of cells, which significantly increased sperm progressive motility. Eventual dispersal of sperm trains was associated with most of the spermatozoa undergoing a premature acrosome reaction. Cells undergoing an acrosome reaction in aggregations remote from the egg are altruistic in that they help sperm transport to the egg but compromise their own fertilizing ability
Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores
Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects
Paleophysical Oceanography with an Emphasis on Transport Rates
Paleophysical oceanography is the study of the behavior of the fluid ocean of the past, with a specific emphasis on its climate implications, leading to a focus on the general circulation. Even if the circulation is not of primary concern, heavy reliance on deep-sea cores for past climate information means that knowledge of the oceanic state when the sediments were laid down is a necessity. Like the modern problem, paleoceanography depends heavily on observations, and central difficulties lie with the very limited data types and coverage that are, and perhaps ever will be, available. An approximate separation can be made into static descriptors of the circulation (e.g., its water-mass properties and volumes) and the more difficult problem of determining transport rates of mass and other properties. Determination of the circulation of the Last Glacial Maximum is used to outline some of the main challenges to progress. Apart from sampling issues, major difficulties lie with physical interpretation of the proxies, transferring core depths to an accurate timescale (the “age-model problem”), and understanding the accuracy of time-stepping oceanic or coupled-climate models when run unconstrained by observations. Despite the existence of many plausible explanatory scenarios, few features of the paleocirculation in any period are yet known with certainty.National Science Foundation (U.S.) (grant OCE-0645936
The Cosmology of Composite Inelastic Dark Matter
Composite dark matter is a natural setting for implementing inelastic dark
matter - the O(100 keV) mass splitting arises from spin-spin interactions of
constituent fermions. In models where the constituents are charged under an
axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark
matter scatters inelastically off Standard Model nuclei and can explain the
DAMA/LIBRA annual modulation signal. This article describes the early Universe
cosmology of a minimal implementation of a composite inelastic dark matter
model where the dark matter is a meson composed of a light and a heavy quark.
The synthesis of the constituent quarks into dark mesons and baryons results in
several qualitatively different configurations of the resulting dark matter
hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog
Siblings, Stories and the Self: the sociological significance of young people’s sibling relationships
This article explores the significance of intra-generational ties with siblings to sociological understandings of the formation of social identity and sense of self in young people’s lives. Drawing on data from a qualitative study exploring young people’s sense of who they are and who they have the potential to become in the future, it is demonstrated that young people’s identities are often constructed in relation to how they are similar to or different from their sibling(s). Literature expounding the role of stories in the construction of the self is used to suggest that the comparing that is at the heart of the relational construction of sibling identities can occur through the telling and re-telling of family stories within the politics and power dynamics of existing relationships. The article concludes by suggesting that sibling relationships be conceptualized as part of a web of relationships in which young people are embedded
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
Recommended from our members
Reducing non-attendance rates for assessment at an eating disorders service: a quality improvement initiative
Rates of non-attendance at initial appointments within community eating disorder (ED) services are frequently high, although this has received relatively little research attention and no reports of interventions designed to address this. The current report describes outcomes following a change of procedure introducing a ‘partial booking’ system. Attendance rates at first appointments (N = 1260) were audited following introduction of a system designed to reduce non-attendance in January 2013 within a UK ED service. Rates were compared following implementation of the new system, using a historical control group for comparison, and showed a decline from 20.4 to 15.1%, a medium-sized effect. Use of a system asking patients to book an appointment reduced non-attendance at initial appointments and may be of use to similar services experiencing high non-attendance rates. Opt-in initiatives can reduce burden resulting from long waiting times and can be easily adapted to individual services
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
- …
