2,099 research outputs found

    Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy

    Full text link
    We consider a general, classical theory of gravity with arbitrary matter fields in nn dimensions, arising from a diffeomorphism invariant Lagrangian, \bL. We first show that \bL always can be written in a ``manifestly covariant" form. We then show that the symplectic potential current (n1)(n-1)-form, th\th, and the symplectic current (n1)(n-1)-form, \om, for the theory always can be globally defined in a covariant manner. Associated with any infinitesimal diffeomorphism is a Noether current (n1)(n-1)-form, \bJ, and corresponding Noether charge (n2)(n-2)-form, \bQ. We derive a general ``decomposition formula" for \bQ. Using this formula for the Noether charge, we prove that the first law of black hole mechanics holds for arbitrary perturbations of a stationary black hole. (For higher derivative theories, previous arguments had established this law only for stationary perturbations.) Finally, we propose a local, geometrical prescription for the entropy, SdynS_{dyn}, of a dynamical black hole. This prescription agrees with the Noether charge formula for stationary black holes and their perturbations, and is independent of all ambiguities associated with the choices of \bL, th\th, and \bQ. However, the issue of whether this dynamical entropy in general obeys a ``second law" of black hole mechanics remains open. In an appendix, we apply some of our results to theories with a nondynamical metric and also briefly develop the theory of stress-energy pseudotensors.Comment: 30 pages, LaTe

    Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Get PDF
    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.https://doi.org/10.3390/s14030507

    The Social and Political Dimensions of the Ebola Response: Global Inequality, Climate Change, and Infectious Disease

    Get PDF
    The 2014 Ebola crisis has highlighted public-health vulnerabilities in Liberia, Sierra Leone, and Guinea – countries ravaged by extreme poverty, deforestation and mining-related disruption of livelihoods and ecosystems, and bloody civil wars in the cases of Liberia and Sierra Leone. Ebola’s emergence and impact are grounded in the legacy of colonialism and its creation of enduring inequalities within African nations and globally, via neoliberalism and the Washington Consensus. Recent experiences with new and emerging diseases such as SARS and various strains of HN influenzas have demonstrated the effectiveness of a coordinated local and global public health and education-oriented response to contain epidemics. To what extent is international assistance to fight Ebola strengthening local public health and medical capacity in a sustainable way, so that other emerging disease threats, which are accelerating with climate change, may be met successfully? This chapter considers the wide-ranging socio-political, medical, legal and environmental factors that have contributed to the rapid spread of Ebola, with particular emphasis on the politics of the global and public health response and the role of gender, social inequality, colonialism and racism as they relate to the mobilization and establishment of the public health infrastructure required to combat Ebola and other emerging diseases in times of climate change

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Beyond in-phase and anti-phase coordination in a model of joint action

    Get PDF
    In 1985, Haken, Kelso and Bunz proposed a system of coupled nonlinear oscillators as a model of rhythmic movement patterns in human bimanual coordination. Since then, the Haken–Kelso–Bunz (HKB) model has become a modelling paradigm applied extensively in all areas of movement science, including interpersonal motor coordination. However, all previous studies have followed a line of analysis based on slowly varying amplitudes and rotating wave approximations. These approximations lead to a reduced system, consisting of a single differential equation representing the evolution of the relative phase of the two coupled oscillators: the HKB model of the relative phase. Here we take a different approach and systematically investigate the behaviour of the HKB model in the full four-dimensional state space and for general coupling strengths. We perform detailed numerical bifurcation analyses and reveal that the HKB model supports previously unreported dynamical regimes as well as bistability between a variety of coordination patterns. Furthermore, we identify the stability boundaries of distinct coordination regimes in the model and discuss the applicability of our findings to interpersonal coordination and other joint action tasks

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore