34 research outputs found

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes

    Get PDF
    Human metapneumovirus (HMPV), a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B) cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments

    Evaluation of the safety, immunogenicity, and faecal shedding of novel oral polio vaccine type 2 in healthy newborn infants in Bangladesh: a randomised, controlled, phase 2 clinical trial.

    Get PDF
    BACKGROUND: Type 2 circulating vaccine-derived polioviruses (cVDPV2) from Sabin oral poliovirus vaccines (OPVs) are the leading cause of poliomyelitis. A novel type 2 OPV (nOPV2) has been developed to be more genetically stable with similar tolerability and immunogenicity to that of Sabin type 2 vaccines to mitigate the risk of cVDPV2. We aimed to assess these aspects of nOPV2 in poliovirus vaccine-naive newborn infants. METHODS: In this randomised, double-blind, controlled, phase 2 trial we enrolled newborn infants at the Matlab Health Research Centre, Chandpur, Bangladesh. We included infants who were healthy and were a single birth after at least 37 weeks' gestation. Infants were randomly assigned (2:1) to receive either two doses of nOPV2 or placebo, administered at age 0-3 days and at 4 weeks. Exclusion criteria included receipt of rotavirus or any other poliovirus vaccine, any infection or illness at the time of enrolment (vomiting, diarrhoea, or intolerance to liquids), diagnosis or suspicion of any immunodeficiency disorder in the infant or a close family member, or any contraindication for venipuncture. The primary safety outcome was safety and tolerability after one and two doses of nOPV2, given 4 weeks apart in poliovirus vaccine-naive newborn infants and the primary immunogenicity outcome was the seroconversion rate for neutralising antibodies against type 2 poliovirus, measured 28 days after the first and second vaccinations with nOPV2. Study staff recorded solicited and unsolicited adverse events after each dose during daily home visits for 7 days. Poliovirus neutralising antibody responses were measured in sera drawn at birth and at age 4 weeks and 8 weeks. This study is registered on ClinicalTrials.gov, NCT04693286. FINDINGS: Between Sept 21, 2020, and Aug 16, 2021, we screened 334 newborn infants, of whom three (<1%) were found to be ineligible and one (<1%) was withdrawn by the parents; the remaining 330 (99%) infants were assigned to receive nOPV2 (n=220 [67%]) or placebo (n=110 [33%]). nOPV2 was well tolerated; 154 (70%) of 220 newborn infants in the nOPV2 group and 78 (71%) of 110 in the placebo group had solicited adverse events, which were all mild or moderate in severity. Severe unsolicited adverse events in 11 (5%) vaccine recipients and five (5%) placebo recipients were considered unrelated to vaccination. 306 (93%) of 330 infants had seroprotective maternal antibodies against type 2 poliovirus at birth, decreasing to 58 (56%) of 104 in the placebo group at 8 weeks. In the nOPV2 group 196 (90%) of 217 infants seroconverted by week 8 after two doses, when 214 (99%) had seroprotective antibodies. INTERPRETATION: nOPV2 was well tolerated and immunogenic in newborn infants, with two doses, at birth and 4 weeks, resulting in almost 99% of infants having protective neutralising antibodies. FUNDING: Bill & Melinda Gates Foundation

    Genomic Sequencing and Comparative Analysis of Epstein-Barr Virus Genome Isolated from Primary Nasopharyngeal Carcinoma Biopsy

    Get PDF
    Whether certain Epstein-Barr virus (EBV) strains are associated with pathogenesis of nasopharyngeal carcinoma (NPC) is still an unresolved question. In the present study, EBV genome contained in a primary NPC tumor biopsy was amplified by Polymerase Chain Reaction (PCR), and sequenced using next-generation (Illumina) and conventional dideoxy-DNA sequencing. The EBV genome, designated HKNPC1 (Genbank accession number JQ009376) is a type 1 EBV of approximately 171.5 kb. The virus appears to be a uniform strain in line with accepted monoclonal nature of EBV in NPC but is heterogeneous at 172 nucleotide positions. Phylogenetic analysis with the four published EBV strains, B95-8, AG876, GD1, and GD2, indicated HKNPC1 was more closely related to the Chinese NPC patient-derived strains, GD1 and GD2. HKNPC1 contains 1,589 single nucleotide variations (SNVs) and 132 insertions or deletions (indels) in comparison to the reference EBV sequence (accession number NC007605). When compared to AG876, a strain derived from Ghanaian Burkitt's lymphoma, we found 322 SNVs, of which 76 were non-synonymous SNVs and were shared amongst the Chinese GD1, GD2 and HKNPC1 isolates. We observed 88 non-synonymous SNVs shared only by HKNPC1 and GD2, the only other NPC tumor-derived strain reported thus far. Non-synonymous SNVs were mainly found in the latent, tegument and glycoprotein genes. The same point mutations were found in glycoprotein (BLLF1 and BALF4) genes of GD1, GD2 and HKNPC1 strains and might affect cell type specific binding. Variations in LMP1 and EBNA3B epitopes and mutations in Cp (11404 C>T) and Qp (50134 G>C) found in GD1, GD2 and HKNPC1 could potentially affect CD8+ T cell recognition and latent gene expression pattern in NPC, respectively. In conclusion, we showed that whole genome sequencing of EBV in NPC may facilitate discovery of previously unknown variations of pathogenic significance

    Genetic Diversity of EBV-Encoded LMP1 in the Swiss HIV Cohort Study and Implication for NF-Κb Activation

    Get PDF
    Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1

    Components of the Reovirus Capsid Differentially Contribute to Stability

    No full text
    corecore