123 research outputs found

    The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    Get PDF
    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the ‘baryon oscillations’ that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial n_s = 1 spectrum, h = 0.72 and negligible neutrino mass, the preferred parameters are Ω_mh = 0.168 ± 0.016 and a baryon fraction Ωb/Ω_m= 0.185 ± 0.046 (1σ errors). The value of Ω_mh is 1σ lower than the 0.20 ± 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ω_m = 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ω_m = 0.231 ± 0.021

    The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe

    Get PDF
    We present a detailed analysis of the two-point correlation function, ξ(σ, π), from the 2dF Galaxy Redshift Survey (2dFGRS). The large size of the catalogue, which contains ∼220 000 redshifts, allows us to make high-precision measurements of various properties of the galaxy clustering pattern. The effective redshift at which our estimates are made is zs≈ 0.15, and similarly the effective luminosity, Ls≈ 1.4L*. We estimate the redshift-space correlation function, ξ(s), from which we measure the redshift-space clustering length, s0= 6.82 ± 0.28 h−1 Mpc. We also estimate the projected correlation function, Ξ(σ), and the real-space correlation function, ξ(r), which can be fit by a power law (r/r0), with r0= 5.05 ± 0.26 h−1 Mpc, γr= 1.67 ± 0.03. For r≳ 20 h−1 Mpc, ξ drops below a power law as, for instance, is expected in the popular Λ cold dark matter model. The ratio of amplitudes of the real- and redshift-space correlation functions on scales of 8–30 h−1 Mpc gives an estimate of the redshift-space distortion parameter β. The quadrupole moment of ξ(σ, π) on scales 30–40 h−1 Mpc provides another estimate of β. We also estimate the distribution function of pairwise peculiar velocities, ƒ(v), including rigorously the significant effect due to the infall velocities, and we find that the distribution is well fit by an exponential form. The accuracy of our ξ(σ, π) measurement is sufficient to constrain a model, which simultaneously fits the shape and amplitude of ξ(r) and the two redshift-space distortion effects parametrized by β and velocity dispersion, a. We find β= 0.49 ± 0.09 and a= 506 ± 52 km s−1, although the best-fitting values are strongly correlated. We measure the variation of the peculiar velocity dispersion with projected separation, a(σ), and find that the shape is consistent with models and simulations. This is the first time that β and ƒ(v) have been estimated from a self-consistent model of galaxy velocities. Using the constraints on bias from recent estimates, and taking account of redshift evolution, we conclude that β (L=L*, z= 0) = 0.47 ± 0.08, and that the present-day matter density of the Universe, Ωm≈ 0.3, consistent with other 2dFGRS estimates and independent analyses

    Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

    Get PDF
    The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2

    Low in‑hospital mortality rate in patients with COVID‑19 receiving thromboprophylaxis: data from the multicentre observational START‑COVID Register

    Get PDF
    Abstract COVID-19 infection causes respiratory pathology with severe interstitial pneumonia and extra-pulmonary complications; in particular, it may predispose to thromboembolic disease. The current guidelines recommend the use of thromboprophylaxis in patients with COVID-19, however, the optimal heparin dosage treatment is not well-established. We conducted a multicentre, Italian, retrospective, observational study on COVID-19 patients admitted to ordinary wards, to describe clinical characteristic of patients at admission, bleeding and thrombotic events occurring during hospital stay. The strategies used for thromboprophylaxis and its role on patient outcome were, also, described. 1091 patients hospitalized were included in the START-COVID-19 Register. During hospital stay, 769 (70.7%) patients were treated with antithrombotic drugs: low molecular weight heparin (the great majority enoxaparin), fondaparinux, or unfractioned heparin. These patients were more frequently affected by comorbidities, such as hypertension, atrial fibrillation, previous thromboembolism, neurological disease,and cancer with respect to patients who did not receive thromboprophylaxis. During hospital stay, 1.2% patients had a major bleeding event. All patients were treated with antithrombotic drugs; 5.4%, had venous thromboembolism [30.5% deep vein thrombosis (DVT), 66.1% pulmonary embolism (PE), and 3.4% patients had DVT + PE]. In our cohort the mortality rate was 18.3%. Heparin use was independently associated with survival in patients aged ≥ 59 years at multivariable analysis. We confirmed the high mortality rate of COVID-19 in hospitalized patients in ordinary wards. Treatment with antithrombotic drugs is significantly associated with a reduction of mortality rates especially in patients older than 59 years

    A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

    Get PDF
    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings: In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Selective laser trabeculoplasty: past, present, and future

    Get PDF
    Over the past two decades, selective laser trabeculoplasty (SLT) has increasingly become an established laser treatment used to lower intraocular pressure in open-angle glaucoma and ocular hypertensive patients. In this review we trace the origins of SLT from previous argon laser trabeculoplasty and review the current role it has in clinical practice. We outline future directions of SLT research and introduce emerging technologies that are further developing this intervention in the treatment paradigm of glaucoma.Eye advance online publication, 5 January 2018; doi:10.1038/eye.2017.273
    corecore