1,935 research outputs found

    Knowledge transfer in a tourism destination: the effects of a network structure

    Full text link
    Tourism destinations have a necessity to innovate to remain competitive in an increasingly global environment. A pre-requisite for innovation is the understanding of how destinations source, share and use knowledge. This conceptual paper examines the nature of networks and how their analysis can shed light upon the processes of knowledge sharing in destinations as they strive to innovate. The paper conceptualizes destinations as networks of connected organizations, both public and private, each of which can be considered as a destination stakeholder. In network theory they represent the nodes within the system. The paper shows how epidemic diffusion models can act as an analogy for knowledge communication and transfer within a destination network. These models can be combined with other approaches to network analysis to shed light on how destination networks operate, and how they can be optimized with policy intervention to deliver innovative and competitive destinations. The paper closes with a practical tourism example taken from the Italian destination of Elba. Using numerical simulations the case demonstrates how the Elba network can be optimized. Overall this paper demonstrates the considerable utility of network analysis for tourism in delivering destination competitiveness.Comment: 15 pages, 2 figures, 2 tables. Forthcoming in: The Service Industries Journal, vol. 30, n. 8, 2010. Special Issue on: Advances in service network analysis v2: addeded and corrected reference

    Controlled switching between paramagnetic and diamagnetic Meissner effect in Pb/Co nanocomposites

    Full text link
    A hybrid system which consists of a superconducting (SC) Pb film (100 nm thickness) containing \sim1 vol% single domain ferromagnetic (FM) Co particles of mean-size \sim4.5 nm reveal unusual magnetic properties: (i) a controlled switching between the usual diamagnetic and the unusual paramagnetic Meissner effect in field cooling as well as in zero-field cooling experiments (ii) amplification of the positive magnetization when the sample enters the SC state below Tc_c. These experimental findings can be explained by the formation of spontaneous vortices and the possible alignment of these vortices due to the foregoing alignment of the Co particle FM moments by an external magnetic field.Comment: 5 pages, 3 figure

    Dynamics and stability of vortex-antivortex fronts in type II superconductors

    Get PDF
    The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis. In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical stability of a front between vortices and antivortices. In particular we focus on the question of whether an instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on the basis of approximate calculations for stationary fronts. As our method extends to more complicated models, which could include coupling to the temperature or to other fields, it provides the basis for a more systematic stability analysis of nonlinear vortex front dynamics.Comment: 13 pages, 8 figure

    Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

    Full text link
    In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles

    Muon Spin Rotation Measurement of the Magnetic Field Penetration Depth in Ba(Fe0.93 Co0.07)2 As2 : Evidence for Multiple Superconducting Gaps

    Get PDF
    We have performed transverse field muon spin rotation measurements of single crystals of Ba(Fe0.93_{0.93}Co0.07)2_{0.07})_2As2_2 with the applied magnetic field along the c^\hat{c} direction. Fourier transforms of the measured spectra reveal an anisotropic lineshape characteristic of an Abrikosov vortex lattice. We have fit the μ\muSRSR spectra to a microscopic model in terms of the penetration depth λ\lambda and the Ginzburg-Landau parameter κ\kappa. We find that as a function of temperature, the penetration depth varies more rapidly than in standard weak coupled BCS theory. For this reason we first fit the temperature dependence to a power law where the power varies from 1.6 to 2.2 as the field changes from 200G to 1000G. Due to the surprisingly strong field dependence of the power and the superfluid density we proceeded to fit the temperature dependence to a two gap model, where the size of the two gaps is field independent. From this model, we obtained gaps of 2Δ1=3.7kBTc2\Delta_1=3.7k_BT_c and 2Δ2=1.6kBTc2\Delta_2=1.6k_BT_c, corresponding to roughly 6 meV and 3 meV respectively

    Correlation between Gamma-Ray bursts and Gravitational Waves

    Get PDF
    The cosmological origin of γ\gamma-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \bbox{hRMS1.5×1018h_{\text{RMS}} \leq 1.5 \times 10^{-18}} on the averaged amplitude of gravitational waves associated with γ\gamma-ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Vulnerability of CMOS image sensors in megajoule class laser harsh environment

    Get PDF
    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques

    Propriedades físicas e químicas e rendimentos da destilação seca da madeira de Grevillea robusta.

    Get PDF
    bitstream/CNPF-2009-09/15736/1/circ-tec40.pd
    corecore