3,727 research outputs found

    Natural melting within a spherical shell

    Get PDF
    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper

    A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure

    Get PDF
    Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified

    Dispersed storage and generation case studies

    Get PDF
    Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future

    Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Get PDF
    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance

    Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    Get PDF
    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower

    Distribution system simulator

    Get PDF
    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented

    Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Full text link
    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.Comment: accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 table

    Heterogeneous catalytic ozonation of 2, 4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: catalytic activity and mechanism

    Get PDF
    Herein, the catalytic properties of a carbonaceous nanocomposite in the catalytic ozonation process (COP) of 2, 4-dinitrophenol (2, 4-DNP) were investigated and the results were compared with those obtained from single ozonation process (SOP). Magnetic carbonaceous nanocomposite, as a novel catalyst, was applied to optimize the condition for the removal of 2, 4-DNP in the COP, and the influential parameters such as pH, catalyst dosage, addition of radical scavengers, and durability were all evaluated. The results showed that the degradation efficiency of 2, 4-DNP and COD in the COP (98.2, 92) was higher compared to the SOP (75, 61) and the highest catalytic potential was achieved at an optimal pH of 6. The first-order modeling demonstrated that the reactions were dependent on the concentration of the catalyst, with the kinetic constants varying from 0.022 (1/min) in the SOP to 1.377 (1/min) in the COP at the catalyst dosage of 4 g/L and the optimum concentration of catalyst (2 g/L). The addition of radical scavenger noticeably diminished the removal efficiency of 2, 4-DNP in the SOP from 75 down to 54, while the corresponding values for the COP dropped from 98.2 to 93. Furthermore, a negligible reduction in the catalytic properties of the catalyst was observed (~5) after five-time reuse. The results also revealed that the applied method is effectively suitable for the removal of 2, 4-DNP contaminant from industrial wastewaters. © 2015 Balaban Desalination Publications. All rights reserved

    Mechanism of membrane tube formation induced by adhesive nanocomponents

    Full text link
    We report numerical simulations of membrane tubulation driven by large colloidal particles. Using Monte Carlo simulations we study how the process depends on particle size, concentration and binding strength, and present accurate free energy calculations to sort out how tube formation compares with the competing budding process. We find that tube formation is a result of the collective behavior of the particles adhering on the surface, and it occurs for binding strengths that are smaller than those required for budding. We also find that long linear aggregates of particles forming on the membrane surface act as nucleation seeds for tubulation by lowering the free energy barrier associated to the process
    corecore