77 research outputs found
A remote sensing-based three-source energy balance model to improve global estimations of evapotranspiration in semi-arid tree-grass ecosystems
It is well documented that energy balance and other remote sensing-based evapotranspiration (ET) models face greater uncertainty over water-limited tree-grass ecosystems (TGEs), representing nearly 1/6th of the global land surface. Their dual vegetation strata, the grass-dominated understory and tree-dominated overstory, make for distinct structural, physiological and phenological characteristics, which challenge models compared to more homogeneous and energy-limited ecosystems. Along with this, the contribution of grasses and trees to total transpiration (T), along with their different climatic drivers, is still largely unknown nor quantified in TGEs. This study proposes a thermal-based three-source energy balance (3SEB) model, accommodating an additional vegetation source within the well-known two-source energy balance (TSEB) model. The model was implemented at both tower and continental scales using eddy-covariance (EC) TGE sites, with variable tree canopy cover and rainfall (P) regimes and Meteosat Second Generation (MSG) images. 3SEB robustly simulated latent heat (LE) and related energy fluxes in all sites (Tower: LE RMSD ~60 W/m2; MSG: LE RMSD ~90 W/m2), improving over both TSEB and seasonally changing TSEB (TSEB-2S) models. In addition, 3SEB inherently partitions water fluxes between the tree, grass and soil sources. The modelled T correlated well with EC T estimates (r > .76), derived from a machine learning ET partitioning method. The T/ET was found positively related to both P and leaf area index, especially compared to the decomposed grass understory T/ET. However, trees and grasses had contrasting relations with respect to monthly P. These results demonstrate the importance in decomposing total ET into the different vegetation sources, as they have distinct climatic drivers, and hence, different relations to seasonal water availability. These promising results improved ET and energy flux estimations over complex TGEs, which may contribute to enhance global drought monitoring and understanding, and their responses to climate change feedbacks.The research received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie TRuStEE project (grant agreement No 721995). It was also funded by Ministerio de Economía y Competitividad through SynerTGE CGL2015-G9095-R funded by MCIN/ AEI /10.13039/501100011033/ FEDER ‘a way of making Europe’. The study also benefitted from the DIVERSPEC-TGA project, funded by the Ministerio de Ciencia e Innovación of Spain MCIN/ AEI /10.13039/501100011033. The infrastructure at ES-LM1 was partly funded through the Alexander von Humboldt Foundation, ELEMENTAL (CGL 2017-83538-C3-3-R, MINECO-FEDER) and IMAGINA (PROMETEU 2019; Generalitat Valenciana). Funding for the US-Ton AmeriFlux site was provided by the U.S. Department of Energy's Office of Science. This research was also supported by the NASA Ecostress project. We thank Siyan Ma for contributing to the collection and processing of US-Ton’s in situ data. USDA is an equal opportunity provider and employer.Peer reviewe
Energy balance measurements over a banana orchard in the Semiarid region in the Northeast of Brazil
The objective of this work was to evaluate the reliability of eddy covariance measurements, analyzing the energy balance components, evapotranspiration and energy balance closure in dry and wet growing seasons, in a banana orchard. The experiment was carried out at a farm located within the irrigation district of Quixeré, in the Lower Jaguaribe basin, in Ceará state, Brazil. An eddy covariance system was used to measure the turbulent flux. An automatic weather station was installed in a grass field to obtain the reference evapotranspiration (ET0) from the combined FAO-Penman-Monteith method. Wind speed and vapor pressure deficit are the most important variables on the evaporative process in both growing seasons. In the dry season, the heat fluxes have a similar order of magnitude, and during the wet season the latent heat flux is the largest. The eddy covariance system had acceptable reliability in measuring heat flux, with actual evapotranspiration results comparing well with those obtained by using the water balance method. The energy balance closure had good results for the study area, with mean values of 0.93 and 0.86 for the dry and wet growing seasons respectively
Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view
Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only on soil carbon stocks but also on greenhouse gas emissions in order to provide an accurate life cycle assessment for the ethanol. Given that the greenhouse gas value is the primary measure of biofuel product quality, biorefiners that can show a higher offset of their product will have an advantage in the market place
Estimativa dos componentes do balanço de energia e da evapotranspiração para áreas de cultivo de soja no sul do Brasil utilizando imagens do sensor TM Landsat 5
Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties
Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux
12 páginas, 5 figuras, 2 tablas.It is well known that microbial-mediated
soil respiration, the major source of CO2 from
terrestrial ecosystems, is sensitive to temperature.
Here, we hypothesize that some mechanisms, such as
acclimation of microbial respiration to temperature
and/or regulation by plant fresh C inputs of the
temperature sensitivity of decomposition of soil
organic matter (SOM), should be taken into account
to predict soil respiration correctly. Specifically, two
hypotheses were tested: (1) under warm conditions,
temperature sensitivity (Q10
) and basal rates of
microbial-mediated soil respiration (Bs20,
respiration
at a given temperature) would be primarily subjected
to presence/absence of plant fresh C inputs; and
(2) under cold conditions, where labile C depletion
occurred more slowly, microbial-mediated soil respiration could adjust its optimal temperatures to colder
temperatures (acclimation), resulting in a net increase
of respiration rates for a given temperature (Bs20). For
this purpose, intact soil cores from an oak savanna
ecosystem were incubated with sufficient water supply at two contrasting temperatures (10 and 30 C)
during 140 days. To study temperature sensitivity of
soil respiration, short-term temperature cycles (from 5
to 40 C at 8 h steps) were applied periodically to the
soils. Our results confirmed both hypotheses. Under
warm conditions ANCOVA and likelihood ratio tests
confirmed that both Q10
and Bs20
decreased signifi-
cantly during the incubation. Further addition of
glucose at the end of the incubation period increased
Bs20
and Q10
to initial values. The observed decrease
in temperature sensitivity (Q10) in absence of labile C
disagrees with the broadly accepted fact that temperature sensitivity of the process increases as quality of
the substrate decreases. Our experiment also shows
that after 2 months of incubation cold-incubated soils
doubled the rates of respiration at cold temperatures
causing a strong increase in basal respiration rates
(Bs20). This suggest that microbial community may
have up-regulated their metabolism at cold conditions
(cold-acclimation), which also disagrees with most
observations to date. The manuscript discusses those
two apparent contradictions: the decrease in temperature sensitivity in absence of labile C and the
increase in microbial-mediated soil respiration rates
at cold temperatures. While this is only a case study,
the trends observed could open the controversy over
the validity of current soil respiration models.This research was supported by the Kearney
Soil Science Foundation and the US Department of Energy’s
Terrestrial Carbon Program, grant No. DE-FG03-00ER63013.
These sites are members of the AmeriFlux and Fluxnet networks.
J Curiel Yuste received a Marie Curie Intra-European Fellowship
(EIF) from de European Union for project MICROCARB (FP6-
2005-Mobility-5 # 041409-MICROCARB) while conducting
this research.Peer reviewe
A comparison of new and existing equations for estimating sensible heat flux density using surface renewal and similarity concepts
The definitive version is available at: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973This paper describes two approaches for estimating sensible heat flux, using surface renewal and similarity concepts. One approach depends on a temperature structure function parameter and is valid in the inertial sub-layer. The other approach depends on the temperature standard deviation and operates when measurements are made above the canopy top, either in the roughness or inertial sub-layer. The approaches were tested over turf grass, rangeland grass, wheat, grape vineyard and nectarine and olive orchards. It is shown that the free convection limit expression for the standard deviation method holds for slightly unstable conditions. When surface homogeneity and fetch requirements are not fully met in the field, the results show that the equations based on surface renewal principles are more robust and accurate than equations exclusively based on similarity backgrounds. It is likely that the two methods require no calibration unless the canopy is heterogeneous. Under unstable conditions, the free convection limit equation, which depends on the temperature standard deviation, can provide on-line sensible heat flux density estimates using affordable battery-powered data logger with temperature data as the only input. The approach performed well when measuring near or well above the canopy top, thus, suggesting that the method is useful for long term monitoring over growing vegetation.This work was supported by the Ministerio de Ciencia y Tecnología under the Spanish project REN2001-1630 CLI, the DURSI of the Generalitat of Catalunya and the University of Lleida. Data from the grassland was supported by grants from the US Dept of Energy and the California Agricultural Experiment Station.Peer reviewe
- …
