14,308 research outputs found

    Pseudo-transient computational fluid dynamics analysis of an underbonnet compartment during thermal soak

    Get PDF
    Underbonnet simulations are proving to be crucially important within a vehicle development programme, reducing test work and time-to-market. While computational fluid dynamics (CFD) simulations of steady forced flows have been demonstrated to be reliable, studies of transient convective flows in engine compartments are not yet carried out owing to high computing demands and lack of validated work. The present work assesses the practical feasibility of applying the CFD tool at the initial stage of a vehicle development programme for investigating the thermally driven flow in an engine bay under thermal soak. A computation procedure that enables pseudo time-marching CFD simulations to be performed with significantly reduced central processing unit (CPU) time usage is proposed. The methodology was initially tested on simple geometries and then implemented for investigating a simplified half-scale underbonnet compartment. The numerical results are compared with experimental data taken with thermocouples and with particle image velocimetry (PIV). The novel computation methodology is successful in efficiently providing detailed and time-accurate time-dependent thermal and flow predictions. Its application will extend the use of the CFD tool for transient investigations, enabling improvements to the component packaging of engine bays and the refinement of thermal management strategies with reduced need for in-territory testing

    Experimental Animal Decompressions to a Near-Vacuum Environment

    Get PDF
    Rapid decompression of dogs to near vacuum environment to estimate times of consciousness, collapse, and surviva

    Tools for 3D scientific visualization in computational aerodynamics

    Get PDF
    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording

    Nearest neighbour analysis and spatial relationships of Wedge-tailed Shearwater, Puffinus pacificus (Aves: Procellariiformes), burrow entrances at Radar Reef, Rottnest Island, Western Australia

    Get PDF
    The spatial distribution of Wedge-tailed Shearwater burrow entrances on Rottnest Island, Western Australia, was investigated using the single- and two-sector nearest neighbour methods ofpoint pattern analysis. Both analyses yielded similar results. Mean burrow density was 0.32 ±0.02 SE burrows m-2, burrow entrances were not distributed at random and entrances tended towards an even distribution. Evenness ofdistribution was positively correlated with burrow density. Social and structural factors are likely to be important in determining burrow entrance distribution by Wedge-tailed Shearwaters and there appears to be a density-dependent trade-off between social benefit (aggregated burrow entrances at low densities) and colony stability (evenly distributed burrow entrances at high densities)

    TMS-induced Neural Noise in Sensory Cortex Interferes with Short-term Memory Storage in Prefrontal Cortex

    Get PDF
    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.\u27s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature

    Automated Feedback for 'Fill in the Gap' Programming Exercises

    Get PDF
    Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE

    Knowledge Is Power: What Went Wrong in the Mutual Fund Industry

    Get PDF

    Predicting sexual problems in women: The relevance of sexual excitation and sexual inhibition

    Get PDF
    This is the post-print version of the article. The official published version can be obtained from the link below.Data from a non-clinical sample of 540 heterosexual women were used to examine the relationships between scores on the Sexual Excitation/Sexual Inhibition Inventory for Women (SESII-W) and ratings of current sexual problems, lifetime arousal difficulty, lifetime orgasm difficulty, and lifetime problems with low sexual interest. Multiple regression analyses also included several demographic/background variables as predictors: age, full-time employment, completed college, children in household, married, health ratings, importance of sex, and whether the woman was in a sexual relationship. The strongest statistical predictors of both current and lifetime sexual problems were the SESII-W inhibition factors Arousal Contingency and Concerns about Sexual Function. Demographic factors did not feature largely in any of the models predicting sexual problems even when statistically significant relationships were found. If future research supports the predictive utility of the SESII-W in identifying women who are more likely to experience sexual difficulties, these scales may be used as prognostic factors in treatment studies.This study was funded, in part, by a grant from the Lilly Centre for Women's Health
    corecore