2,126 research outputs found
Integrating regional-scale connectivity in habitat restoration: An application for amphibian conservation in eastern France
International audienceHabitat restoration is one way of reducing landscape fragmentation, which is seen as a threat to biodiversity. It consists in renovating disused or degraded habitat patches or in creating new habitat patches in suitable areas. Currently, most restoration measures draw on the local knowledge of experts for selecting the best locations. For amphibian metapopulations like the European tree frog (Hyla arborea), the search for such locations must include regional-scale connectivity in order to maintain their viability. We set up a systematic and cumulative protocol for adding new habitat patches to a pond network. Graph modelling is used to include regional-scale connectivity as a criterion to be maximized. Successive locations are tested systematically and connectivity is compared before and after the virtual addition of each new pond. The location that increases connectivity most is identified. The results show that the priority areas identified by the model are similar to those suggested by local experts from a wildlife conservation association. The two approaches are complementary because they are applied on two different scales. The patch addition method can identify strategic areas for improving global connectivity by taking into account the regional scale. Experts' knowledge can target the precise location within the identified area for creating new habitats based on local factors of the surrounding context. In addition, our method can be also used to prioritize locations already decided on by landscape managers. Consequently, this protocol appears to be a useful tool for guiding habitat restoration in the field
Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method
The technique of low energy (0–30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0–2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening ([similar]0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π–π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2–8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future
Catch and release’ cascades: a resin-mediated three-component cascade approach to small molecules
The application of a ‘catch and release’ approach to palladium-catalysed multi-component cascade reactions leads to diverse libraries of pharmacologically interesting small molecules in high yield and with excellent purity
Toward the First Nonpeptidic Molecular Tong Inhibitor of Wild-Type and Mutated HIV-1 Protease Dimerization
The study of the negative pion production in neutron-proton collisions at beam momenta below 1.8 GeV/c
A detailed investigation of the reaction np -> pp\pi^{-} has been carried out
using the data obtained with the continuous neutron beam produced by charge
exchange scattering of protons off a deuterium target. A partial wave
event-by-event based maximum likelihood analysis was applied to determine
contributions of different partial waves to the pion production process. The
combined analysis of the np -> pp\pi^{-} and pp -> pp\pi^{0} data measured in
the same energy region allows us to determine the contribution of isoscalar
partial waves (I=0) in the momentum range from 1.1 up to 1.8 GeV/c. The decay
of isoscalar partial waves into (^1S_0)_{pp}\pi$ channel provides a good tool
for a determination of the pp S-wave scalar scattering length in the final
state which was found to be a_{pp}=-7.5\pm 0.3 fm.Comment: 6 pages, 6 figure
Observation of strong final-state effects in pi+ production in pp collisions at 400 MeV
Differential cross sections of the reactions and have been measured at MeV by detecting the charged
ejectiles in the angular range . The
deduced total cross sections agree well with those published previously for
neighbouring energies. The invariant mass spectra are observed to be strongly
affected by production and final-state interaction. The data are
well described by Monte Carlo simulations including both these effects. The
ratio of and cross sections also compares
favourably to a recent theoretical prediction which suggests a dominance of
-production in the relative -state.Comment: 17 pages, 5 figure
Fluorinated musk fragrances : the CF2 group as a conformational bias influencing the odour of civetone and (R)-muscone
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the European Research Council (ERC). The authors acknowledge the EPSRC National Mass Spectrometry Facility (Swansea). M.Y. thanks the China Scholarship Council for financial support. D.O'H. thanks the Royal Society for a Wolfson Research Merit Award.The difluoromethylene (CF2) group has a strong tendency to adopt corner over edge locations in aliphatic macrocycles. In this study, the CF2 group has been introduced into musk relevant macrocyclic ketones. Nine civetone and five muscone analogues have been prepared by synthesis for structure and odour comparisons. X-ray studies indeed show that the CF2 groups influence ring structure and they give some insight into the preferred ring conformations, triggering a musk odour as determined in a professional perfumery environment. The historical conformational model of Bersuker and co-workers for musk fragrance generally holds, and structures that become distorted from this consensus, by the particular placement of the CF2 groups, lose their musk fragrance and become less pleasant.PostprintPeer reviewe
Development and Application of Efficient Methods for the Computation of Electronic Spectra of Large Systems
In this thesis, an efficient procedure to compute electronic excitation spectra of molecular systems is presented, focusing particularly on the computation of electronic circular dichroism (ECD) spectra. ECD spectroscopy is commonly used to distinguish between the two enantiomers of a chiral compound. Due to a strong sensitivity to the three-dimensional structure, reliable simulation of ECD spectra of solvated molecules by quantum chemical methods requires the knowledge of the relevant conformers along with the corresponding ECD signals (i.e., the individual transition intensities and energies) and Boltzmann populations. The latter point can be addressed by an established thermochemical protocol. It combines electronic energies computed in gas phase by dispersion-corrected density functional theory (DFT-D) with nuclear ro-vibrational and solvation contributions to yield the free energies in solution. This model is applied to study the association of two intermolecular frustrated Lewis pairs (FLPs). Though this case study does not aim at computing an ECD spectrum, it provides insight on whether such a scheme could also be suited to rank conformers in solution. Comparison to high-level reference methods and partially available experimental data suggests that the largest uncertainty can be attributed to the implicit solvation model. The errors for different dimer arrangements, however, appear to be within the order of 1 kcal mol-1, which is encouraging for the pursued computation of conformer free energies. In combination with a quadruple-ζ basis set, hybrid DFT-D methods like the PW6B95-D3 are almost converged with respect to a complete basis and provide satisfactory results for the electronic energy contribution. Hence, they are recommended choices for the final electronic structure level to rank different conformers in routine calculations. The major part of this thesis deals with the development and application of cost-efficient excited state methods. The current state-of-the-art to compute ECD spectra for systems with roughly 100 atoms is the time-dependent density functional theory (TD-DFT) approach. Based on the latter, the simplified TD-DFT (sTD-DFT) method is developed. The excited state treatment is accelerated by at least three orders of magnitude, resulting from semiempirically approximated two-electron integrals and a significant reduction of the involved matrix dimensions. The introduced approximations are in line with the ones in the previously presented simplified Tamm-Dancoff approximated TD-DFT (sTDA-DFT). It is shown that the sTD-DFT and the sTDA-DFT approaches provide roughly the same accuracy for vertical excitation energies, as well as absorption and ECD spectra, as their parental schemes, i.e., TD-DFT and Tamm-Dancoff approximated TD-DFT (TDA-DFT), respectively. Thus, sTD-DFT is an efficient approach that is suitable for the computation of ECD spectra. Furthermore, sTD-DFT calculations conducted on "snapshots" from molecular dynamics (MD) simulations offer an appealing way to effectively incorporate vibronic effects without a quantum mechanical (QM) treatment of the nuclei. Such a treatment is exemplified for [16]helicene (102 atoms) and a di-substituted derivative (164 atoms). While the feasibility of applying sTDA-DFT to very large systems is demonstrated for two palladium(II) metallosupramolecular spheres (822 and 1644 atoms, respectively), it is also shown that this method produces ECD spectra of incorrect sign in the origin-independent dipole velocity formalism for extended π-systems. This behavior is due to the Tamm-Dancoff approximation (TDA) and, therefore, it is also present in TDA-DFT and the related configuration interaction singles (CIS) approach. Based on the insights obtained from this study, the A+B/2 correction is developed, which corrects the (simplified) TDA eigenvectors affording origin-independent dipole velocity ECD spectra of roughly (s)TD-DFT quality, while retaining the lower computational cost of the (s)TDA excited state treatment. Combination with a newly developed, purpose-specific extended tight-binding procedure for the ground state yields the ultra-fast sTDA-xTB approach. Due to different adjustments of the atomic orbital basis and the tight-binding Hamiltonian, the method is on a par with TDA-PBE0/def2-SV(P) for vertical excitation energies. The entire computation of an ECD spectrum ( The last part of this thesis reports on another purpose-specific extended tight-binding scheme, GFN-xTB, which provides molecular geometries, harmonic vibrational frequencies, and non-covalent interaction energies with comparable or better accuracy than existing semiempirical methods. Since parameters are available for all elements with Z ≤ 86, the method offers great potential to sample the conformational space of almost arbitrary molecules with up to a few hundred atoms. In combination with the ultra-fast sTDA-xTB approach, ECD spectra can be computed in an almost "black box" manner, e.g., by computing spectra on MD snapshots. Together with the established thermochemistry protocol mentioned above, the newly developed architecture sets the stage for a fully automatic multi-level ECD procedure to be developed in the near future.Diese Dissertation stellt einen effizienten Ansatz zur Berechnung von elektronischen Anregungsspektren molekularer Systeme vor, wobei der besondere Fokus auf der Berechnung von elektronischen Circulardichroismus-(ECD-)Spektren liegt. Die ECD-Spektroskopie wird typischerweise verwendet, um zwischen den beiden Enantiomeren einer chiralen Verbindung zu unterscheiden. Aufgrund der hohen Sensibilität für die räumliche Struktur des Moleküls wird zur zuverlässigen Simulation von ECD-Spektren die Kenntnis der relevanten Konformere inklusive ihrer Boltzmann-Populationen und der jeweiligen ECD-Signale (d.h. deren energetische Lage und Intensitäten) benötigt. Die Populationen können mithilfe eines literaturbekannten Thermochemieprotokolls unter Verwendung der dispersionskorrigierten Dichtefunktionaltheorie (DFT-D) näherungsweise berechnet werden. In der vorliegenden Arbeit wird dieses Modell verwendet, um die Komplexbildung von zwei intermolekularen frustrierten Lewispaaren (FLPs) zu untersuchen. Obwohl diese Fallstudie keine Berechnung eines ECD-Spektrums zum Ziel hat, geben die gewonnenen Erkenntnisse durchaus Aufschluss darüber, ob sich der gewählte Ansatz auch dazu eignet, die Populationen verschiedener Konformere zu bestimmen. Der Vergleich mit hochwertigen Vergleichsrechnungen auf der einen und mit zum Teil verfügbaren experimentellen Daten auf der anderen Seite legt nahe, dass der größte Unsicherheitsfaktor in den Solvatationsbeiträgen vorliegt, welche mithilfe eines impliziten Lösungsmittelmodells bestimmt werden. Allerdings liegen deren geschätzte Fehler für unterschiedliche räumliche Anordnungen des Komplexes, d.h. bei einer gleichbleibenden Systemgröße von ca. 50-100 Atomen, lediglich bei etwa 1 kcal mol-1. Für die Berechnung von freien konformellen Enthalpien ist mit ähnlich großen Fehlern zu rechnen. Kombiniert mit Quadruple-ζ-Basissätzen weisen Hybrid-DFT-Methoden bereits nahezu konvergierte elektronische Energien auf und können bei gleichzeitiger Verwendung einer Dispersionskorrektur relativ genaue Gasphasenenergiebeiträge (so z.B. PW6B95-D3) zu den freien Enthalpien in Lösung beitragen. Der Großteil dieser Dissertation beschäftigt sich mit der Entwicklung und Anwendung von kosteneffizienten Methoden zur Berechnung angeregter Zustände. Die gegenwärtig am häufigsten verwendete Methode zur Berechnung von ECD-Spektren ist die zeitabhängige Dichtefunktionaltheorie (TD-DFT). Von dieser ausgehend wird die vereinfachte TD-DFT Methode (sTD-DFT) entwickelt. Aufgrund der semiempirischen Näherung der Zweielektronenintegrale und der deutlichen Reduzierung der relevanten Matrixdimensionen wird die Berechnung der angeregten Zustände um mindestens drei Größenordnungen beschleunigt. Diese Näherungen sind konsistent zu jenen, die bereits in dem vereinfachten Tamm-Dancoff-genäherten TD-DFT (sTDA-DFT) Ansatz eigeführt wurden. Im Vergleich zu den Ausgangsmethoden, also TD-DFT und seiner Tamm-Dancoff-Näherung (TDA-DFT), ist weder eine signifikante Beeinträchtigung der senkrechten Anregungsenergien noch eine Verschlechterung der Absorptions- und ECD-Intensitäten bemerkbar. Insbesondere die sTD-DFT Methode eignet sich zur effizienten und zuverlässigen Berechnung von ECD-Spektren. Die Effizienz der sTD-DFT Methode ermöglicht unter anderem die Berechnung von Spektren auf Nichtminimumsstrukturen, die aus einer Molekulardynamik-(MD)-Simulation stammen. Somit können vibronische Effekte näherungsweise erfasst werden, ohne dass ein quantenmechanischer (QM) Ansatz für die Kerne verwendet werden muss. Exemplarisch wird dieses Verfahren für das [16]Helicen (102 Atome) und einem disubstituierten Derivat (164 Atome) angewandt. Die Anwendbarkeit der sTDA-DFT Methode auf sehr große Systeme wird am Beispiel von zwei Palladium(II)-metallosupramolekularen Komplexen (822 und 1644 Atome) verdeutlicht, doch zeigt eine weitere Studie, dass Tamm-Dancoff-genäherte (TDA) Methoden für die ECD Spektren von ausgedehnten, delokalisierten π-Systemen im Impulsformalismus das falsche Vorzeichen liefern. Gleiches gilt für den verwandten Konfigurationswechselwirkungs-Ansatz mit Einfachanregungen (CIS). Basierend auf den Erkenntnissen dieser Studie ist es gelungen, die sogenannte A+B/2-Näherung zu entwickeln, welche die entsprechenden Fehler in den TDA Eigenvektoren behebt, ohne die Kosten der Methode sichtlich zu erhöhen. Durch die Kombination des so korrigierten vereinfachten TDA-Ansatzes mit einer speziell optimierten semiempirischen Tight-Binding-Methode für den Grundzustand wird die äußerst schnelle sTDA-xTB-Methode erhalten. Aufgrund verschiedener Modifikationen der Atomorbitalbasis und des Tight-Binding-Potentials erreicht diese Methode eine ähnliche Genauigkeit für senkrechte Anregungsenergien wie z.B. eine DFT-basierende Rechnung auf TDA-PBE0/def2-SV(P) Niveau. Die beachtliche Effizienz der Methode wird im Vergleich zum bereits effizienten sTD-BHLYP/def2-SV(P) Ansatz für das [16]Helicen (alle Anregungen bis 9 eV) deutlich: Während letzterer Ansatz etwas mehr als eine Stunde Rechenzeit benötigt, ist das ECD-Spektrum mit sTDA-xTB bereits nach 10 s verfügbar. Da die Parametrisierung nahezu das gesamte Periodensystem abdeckt, werden Standardrechnungen von Spektren großer Systeme (mit ca. 1000 Atomen) ermöglicht, selbst wenn mehrere Konformere berücksichtigt werden. Im letzten Teil der Arbeit wird eine weitere spezialisierte Tight-Binding-Methode vorgestellt (GFN-xTB), die wiederum auf die Berechnung von Geometrien, harmonischen Frequenzen und nichtkovalenten Wechselwirkungen ausgelegt ist und hierfür bessere Ergebnisse liefert als vergleichbare semiempirische Methoden. Die Verfügbarkeit von Parametern für alle Elemente mit Z ≤ 86 ermöglicht das Absuchen des konformellen Raums für unterschiedliche Systeme mit wenigen hundert Atomen. Zusammen mit sTDA-xTB sind in kürzester Zeit Berechnungen von Sprektren z.B. entlang von MD-Trajektorien möglich. Vereint mit den bereits existierenden Thermochemieprotokollen sind somit die ersten Voraussetzungen für eine völlig automatische Prozedur zur Berechnung von ECD-Spektren geschaffen worden
- …
