202 research outputs found
Noncommutative quantum mechanics and Bohm's ontological interpretation
We carry out an investigation into the possibility of developing a Bohmian
interpretation based on the continuous motion of point particles for
noncommutative quantum mechanics. The conditions for such an interpretation to
be consistent are determined, and the implications of its adoption for
noncommutativity are discussed. A Bohmian analysis of the noncommutative
harmonic oscillator is carried out in detail. By studying the particle motion
in the oscillator orbits, we show that small-scale physics can have influence
at large scales, something similar to the IR-UV mixing
Scalar field in the Bianchi I: Non commutative classical and Quantum Cosmology
Using the ADM formalism in the minisuperspace, we obtain the commutative and
noncommutative exact classical solutions and exact wave function to the
Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic
Bianchi type I cosmological model, coupled to a scalar field, cosmological term
and barotropic perfect fluid. We introduce noncommutative scale factors,
considering that all minisuperspace variables do not commute, so the
symplectic structure was modified. In the classical regime, it is shown that
the anisotropic parameter and the field , for some
value in the cosmological term and noncommutative
parameter, present a dynamical isotropization up to a critical cosmic time
; after this time, the effects of isotropization in the noncommutative
minisuperspace seems to disappear. In the quantum regimen, the probability
density presents a new structure that corresponds to the value of the
noncommutativity parameter.Comment: 17 pages, 6 figures, Acepted in IJT
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
Application-Layer Connector Synthesis
International audienceThe heterogeneity characterizing the systems populating the Ubiquitous Computing environment prevents their seamless interoperability. Heterogeneous protocols may be willing to cooperate in order to reach some common goal even though they meet dynamically and do not have a priori knowledge of each other. Despite numerous e orts have been done in the literature, the automated and run-time interoperability is still an open challenge for such environment. We consider interoperability as the ability for two Networked Systems (NSs) to communicate and correctly coordinate to achieve their goal(s). In this chapter we report the main outcomes of our past and recent research on automatically achieving protocol interoperability via connector synthesis. We consider application-layer connectors by referring to two conceptually distinct notions of connector: coordinator and mediator. The former is used when the NSs to be connected are already able to communicate but they need to be speci cally coordinated in order to reach their goal(s). The latter goes a step forward representing a solution for both achieving correct coordination and enabling communication between highly heterogeneous NSs. In the past, most of the works in the literature described e orts to the automatic synthesis of coordinators while, in recent years the focus moved also to the automatic synthesis of mediators. Within the Connect project, by considering our past experience on automatic coordinator synthesis as a baseline, we propose a formal theory of mediators and a related method for automatically eliciting a way for the protocols to interoperate. The solution we propose is the automated synthesis of emerging mediating connectors (i.e., mediators for short)
- …
