3,061 research outputs found
Emotional/Psychiatric Symptom Change and Amygdala Volume After Anterior Temporal Lobectomy
Introduction
Patients who undergo anterior temporal lobectomy (ATL) to treat temporal lobe epilepsy (TLE) often experience worsened or de novo psychiatric symptoms. There is evidence to suggest that the pathophysiology of epilepsy and mood disorders are linked both functionally or structurally in the brain.1,2 While several studies have examined the role that changes in hippocampal volume may play in predicting post-surgical depression, the role of the amygdala in such prediction has been overlooked, despite extensive literature demonstrating its contribution to emotion processing and expression.3,4 The goal of this project was to determine if change in amygdala volume is a predictor of depression and/or anxiety in TLE patients who undergo ATL, with specific attention given to side of surgery.
Methods
Data was collected from 32 patients who underwent ATLs (19 right, 13 left, matched samples). Pre- and post-surgery Personality Assessment Inventory (PAI) data were collected on 14 ATL patients. The following PAI subscales were utilized in this analysis: Anxiety: PAIANX; Anxiety Related Disorder: PAIARD; Depression: PAIDEP). Volumetric analysis was performed on pre- and post-surgical T1 MRIs using Freesurfer’s longitudinal processing function. Left and right amygdala volumes, change scores, and amygdala asymmetry ratios were calculated taking into account whole brain volume. 55% of the patients were seizurefree after 1 year (RTLE= 8, LTLE= 9); 29% received an Engel Class score of 2 or 3 (RTLE= 7, LTLE= 2
Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models
Various new physics models predict a light CP-odd Higgs boson (labeled as
) and open up new decay modes for Z-boson, such as ,
and , which could be explored at the GigaZ option of
the ILC. In this work we investigate these rare decays in several new physics
models, namely the type-II two Higgs doublet model (type-II 2HDM), the
lepton-specific two Higgs doublet model (L2HDM), the nearly minimal
supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric
standard model (NMSSM). We find that in the parameter space allowed by current
experiments, the branching ratios can reach for
(), for and for , which
implies that the decays and may be accessible
at the GigaZ option. Moreover, since different models predict different
patterns of the branching ratios, the measurement of these rare decays at the
GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe
Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models
A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ~3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season
Mucosal Application of gp140 Encoding DNA Polyplexes to Different Tissues Results in Altered Immunological Outcomes in Mice
Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG(+) and IgA(+) antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge
Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress
Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Systematic literature review of determinants of sedentary behaviour in older adults:a DEDIPAC study
BACKGROUND: Older adults are the most sedentary segment of society and high sedentary time is associated with poor health and wellbeing outcomes in this population. Identifying determinants of sedentary behaviour is a necessary step to develop interventions to reduce sedentary time.
METHODS: A systematic literature review was conducted to identify factors associated with sedentary behaviour in older adults. Pubmed, Embase, CINAHL, PsycINFO and Web of Science were searched for articles published between 2000 and May 2014. The search strategy was based on four key elements: (a) sedentary behaviour and its synonyms; (b) determinants and its synonyms (e.g. correlates, factors); (c) types of sedentary behaviour (e.g. TV viewing, sitting, gaming) and (d) types of determinants (e.g. environmental, behavioural). Articles were included in the review if specific information about sedentary behaviour in older adults was reported. Studies on samples identified by disease were excluded. Study quality was rated by means of QUALSYST. The full review protocol is available from PROSPERO (PROSPERO 2014: CRD42014009823). The analysis was guided by the socio-ecological model framework.
RESULTS: Twenty-two original studies were identified out of 4472 returned by the systematic search. These included 19 cross-sectional, 2 longitudinal and 1 qualitative studies, all published after 2011. Half of the studies were European. The study quality was generally high with a median of 82 % (IQR 69-96 %) using Qualsyst tool. Personal factors were the most frequently investigated with consistent positive association for age, negative for retirement, obesity and health status. Only four studies considered environmental determinants suggesting possible association with mode of transport, type of housing, cultural opportunities and neighbourhood safety and availability of places to rest. Only two studies investigated mediating factors. Very limited information was available on contexts and sub-domains of sedentary behaviours.
CONCLUSION: Few studies have investigated determinants of sedentary behaviour in older adults and these have to date mostly focussed on personal factors, and qualitative studies were mostly lacking. More longitudinal studies are needed as well as inclusion of a broader range of personal and contextual potential determinants towards a systems-based approach, and future studies should be more informed by qualitative work
- …
