1,242 research outputs found

    Matter-wave grating distinguishing conservative and dissipative interactions

    Get PDF
    We propose an optical grating for matter waves that separates molecules depending on whether their interaction with the light is conservative or dissipative. Potential applications include fundamental tests of quantum mechanics, measurement of molecular properties and the ability to selectively prepare matter waves with different internal temperatures

    Perturbative Prediction for Parton Fragmentation into Heavy Hadron

    Get PDF
    By expanding functions of parton fragmentation into a heavy hadron in the inverse of the heavy quark mass mQm_Q we attempt to factorize them into perturbative- and nonperturbative parts. In our approach the nonperturbative parts can be defined as matrix elements in heavy quark effective theory, the shape of the functions is predicted by perturbative QCD. In this work we neglect effect at order of mQ2m_Q^{-2} and calculate the perturbative parts at one-loop level for heavy quark- and gluon fragmentation. We compare our results from leading log approximation with experimental results from e+ee^+e^- colliders and find a deviation below or at 10% level. Adding effect of higher order in αs\alpha_s it can be expected to reduce the deviation. The size of matrix elements appearing at the order we consider for several types of heavy hadrons is determined.Comment: 21 pages + 3 pages figures, plain te

    A schematic model for QCD I: Low energy meson states

    Full text link
    A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.Comment: 29 pages, 6 figures. submitted to Phys. Rev.

    Quantized Skyrmion Fields in 2+1 Dimensions

    Full text link
    A fully quantized field theory is developped for the skyrmion topological excitations of the O(3) symmetric CP1^1-Nonlinear Sigma Model in 2+1D. The method allows for the obtainment of arbitrary correlation functions of quantum skyrmion fields. The two-point function is evaluated in three different situations: a) the pure theory; b) the case when it is coupled to fermions which are otherwise non-interacting and c) the case when an electromagnetic interaction among the fermions is introduced. The quantum skyrmion mass is explicitly obtained in each case from the large distance behavior of the two-point function and the skyrmion statistics is inferred from an analysis of the phase of this function. The ratio between the quantum and classical skyrmion masses is obtained, confirming the tendency, observed in semiclassical calculations, that quantum effects will decrease the skyrmion mass. A brief discussion of asymptotic skyrmion states, based on the short distance behavior of the two-point function, is also presented.Comment: Accepted for Physical Review

    Density functional study of Aun_n (n=2-20) clusters: lowest-energy structures and electronic properties

    Get PDF
    We have investigated the lowest-energy structures and electronic properties of the Aun_n(n=2-20) clusters based on density functional theory (DFT) with local density approximation. The small Aun_n clusters adopt planar structures up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a structural transition from tabular cage-like structure to compact near-spherical structure is found around n=15. The most stable configurations obtained for Au13_{13} and Au19_{19} clusters are amorphous instead of icosahedral or fcc-like, while the electronic density of states sensitively depend on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of gold clusters. The size evolution of electronic properties is discussed and the theoretical ionization potentials of Aun_n clusters compare well with experiments.Comment: 6 pages, 7 figure

    Search for an exotic three-body decay of orthopositronium

    Get PDF
    We report on a direct search for a three-body decay of the orthopositronium into a photon and two penetrating particles, o-Ps -> gamma + X1 + X2. The existence of this decay could explain the discrepancy between the measured and the predicted values of the orthopositronium decay rate. From the analysis of the collected data a single candidate event is found, consistent with the expected background. This allows to set an upper limit on the branching ratio < 4.4 \times 10^{-5} (at the 90% confidence level), for the photon energy in the range from 40 keV < E_gamma< 400 keV and for mass values in the kinematical range 0 gamma + X1 + X2 decay mode as the origin of the discrepancy.Comment: 9 pages, 3 figure

    Long range effects on the optical model of 6He around the Coulomb barrier

    Full text link
    We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the Sao Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms.Comment: Accepted in Nucl. Phys. A; 26 pages, 8 figures, 6 tables

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author

    Extrusion limits of magnesium alloys

    Full text link
    Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.<br /

    Quantum spiral bandwidth of entangled two-photon states

    Full text link
    We put forward the concept of quantum spiral bandwidth of the spatial mode function of the two-photon entangled state in spontaneous parametric downconversion. We obtain the bandwidth using the eigenstates of the orbital angular momentum of the biphoton states, and reveal its dependence with the length of the down converting crystal and waist of the pump beam. The connection between the quantum spiral bandwidth and the entropy of entanglement of the quantum state is discussed.Comment: 10 pages, 3 figure
    corecore