1,242 research outputs found
Matter-wave grating distinguishing conservative and dissipative interactions
We propose an optical grating for matter waves that separates molecules depending on whether their interaction with the light is conservative or dissipative. Potential applications include fundamental tests of quantum mechanics, measurement of molecular properties and the ability to selectively prepare matter waves with different internal temperatures
Perturbative Prediction for Parton Fragmentation into Heavy Hadron
By expanding functions of parton fragmentation into a heavy hadron in the
inverse of the heavy quark mass we attempt to factorize them into
perturbative- and nonperturbative parts. In our approach the nonperturbative
parts can be defined as matrix elements in heavy quark effective theory, the
shape of the functions is predicted by perturbative QCD. In this work we
neglect effect at order of and calculate the perturbative parts at
one-loop level for heavy quark- and gluon fragmentation. We compare our results
from leading log approximation with experimental results from
colliders and find a deviation below or at 10% level. Adding effect of higher
order in it can be expected to reduce the deviation. The size of
matrix elements appearing at the order we consider for several types of heavy
hadrons is determined.Comment: 21 pages + 3 pages figures, plain te
A schematic model for QCD I: Low energy meson states
A simple model for QCD is presented, which is able to reproduce the meson
spectrum at low energy. The model is a Lipkin type model for quarks coupled to
gluons. The basic building blocks are pairs of quark-antiquarks coupled to a
definite flavor and spin. These pairs are coupled to pairs of gluons with spin
zero. The multiplicity problem, which dictates that a given experimental state
can be described in various manners, is removed when a particle-mixing
interaction is turned on. In this first paper of a series we concentrates on
the discussion of meson states at low energy, the so-called zero temperature
limit of the theory. The treatment of baryonic states is indicated, also.Comment: 29 pages, 6 figures. submitted to Phys. Rev.
Quantized Skyrmion Fields in 2+1 Dimensions
A fully quantized field theory is developped for the skyrmion topological
excitations of the O(3) symmetric CP-Nonlinear Sigma Model in 2+1D. The
method allows for the obtainment of arbitrary correlation functions of quantum
skyrmion fields. The two-point function is evaluated in three different
situations: a) the pure theory; b) the case when it is coupled to fermions
which are otherwise non-interacting and c) the case when an electromagnetic
interaction among the fermions is introduced. The quantum skyrmion mass is
explicitly obtained in each case from the large distance behavior of the
two-point function and the skyrmion statistics is inferred from an analysis of
the phase of this function. The ratio between the quantum and classical
skyrmion masses is obtained, confirming the tendency, observed in semiclassical
calculations, that quantum effects will decrease the skyrmion mass. A brief
discussion of asymptotic skyrmion states, based on the short distance behavior
of the two-point function, is also presented.Comment: Accepted for Physical Review
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
Search for an exotic three-body decay of orthopositronium
We report on a direct search for a three-body decay of the orthopositronium
into a photon and two penetrating particles, o-Ps -> gamma + X1 + X2. The
existence of this decay could explain the discrepancy between the measured and
the predicted values of the orthopositronium decay rate. From the analysis of
the collected data a single candidate event is found, consistent with the
expected background. This allows to set an upper limit on the branching ratio <
4.4 \times 10^{-5} (at the 90% confidence level), for the photon energy in the
range from 40 keV < E_gamma< 400 keV and for mass values in the kinematical
range 0
gamma + X1 + X2 decay mode as the origin of the discrepancy.Comment: 9 pages, 3 figure
Long range effects on the optical model of 6He around the Coulomb barrier
We present an optical model (OM) analysis of the elastic scattering data of
the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb
barrier. The bare part of the optical potential is constructed microscopically
by means of a double folding procedure, using the Sao Paulo prescription
without any renormalization. This bare interaction is supplemented with a
Coulomb dipole polarization (CDP) potential, which takes into account the
effect of the dipole Coulomb interaction. For this CDP potential, we use an
analytical formula derived from the semiclassical theory of Coulomb excitation.
The rest of the optical potential is parametrized in terms of Woods-Saxon
shapes. In the 6He+208Pb case, the analysis confirms the presence of long range
components, in agreement with previous works. Four-body Continuum-Discretized
Coupled-Channels calculations have been performed in order to better understand
the features of the optical potentials found in the OM analysis. This study
searches to elucidate some aspects of the optical potential of weakly bound
systems, such as the dispersion relation and the long range (attractive and
absorptive) mechanisms.Comment: Accepted in Nucl. Phys. A; 26 pages, 8 figures, 6 tables
Ionic and electronic structure of sodium clusters up to N=59
We determined the ionic and electronic structure of sodium clusters with even
electron numbers and 2 to 59 atoms in axially averaged and three-dimensional
density functional calculations. A local, phenomenological pseudopotential that
reproduces important bulk and atomic properties and facilitates structure
calculations has been developed. Photoabsorption spectra have been calculated
for , , and to
. The consistent inclusion of ionic structure considerably
improves agreement with experiment. An icosahedral growth pattern is observed
for to . This finding is supported by
photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality
can be requested from the author
Extrusion limits of magnesium alloys
Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.<br /
Quantum spiral bandwidth of entangled two-photon states
We put forward the concept of quantum spiral bandwidth of the spatial mode
function of the two-photon entangled state in spontaneous parametric
downconversion. We obtain the bandwidth using the eigenstates of the orbital
angular momentum of the biphoton states, and reveal its dependence with the
length of the down converting crystal and waist of the pump beam. The
connection between the quantum spiral bandwidth and the entropy of entanglement
of the quantum state is discussed.Comment: 10 pages, 3 figure
- …
