1,861 research outputs found

    Distributed computer system enhances productivity for SRB joint optimization

    Get PDF
    Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system

    Discrete Fracture Model with Anisotropic Load Sharing

    Full text link
    A two-dimensional fracture model where the interaction among elements is modeled by an anisotropic stress-transfer function is presented. The influence of anisotropy on the macroscopic properties of the samples is clarified, by interpolating between several limiting cases of load sharing. Furthermore, the critical stress and the distribution of failure avalanches are obtained numerically for different values of the anisotropy parameter α\alpha and as a function of the interaction exponent γ\gamma. From numerical results, one can certainly conclude that the anisotropy does not change the crossover point γc=2\gamma_c=2 in 2D. Hence, in the limit of infinite system size, the crossover value γc=2\gamma_c=2 between local and global load sharing is the same as the one obtained in the isotropic case. In the case of finite systems, however, for γ2\gamma\le2, the global load sharing behavior is approached very slowly

    Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces

    Full text link
    Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter

    Elementary processes governing the evolution of road networks

    Get PDF
    Urbanisation is a fundamental phenomenon whose quantitative characterisation is still inadequate. We report here the empirical analysis of a unique data set regarding almost 200 years of evolution of the road network in a large area located north of Milan (Italy). We find that urbanisation is characterised by the homogenisation of cell shapes, and by the stability throughout time of high-centrality roads which constitute the backbone of the urban structure, confirming the importance of historical paths. We show quantitatively that the growth of the network is governed by two elementary processes: (i) `densification', corresponding to an increase in the local density of roads around existing urban centres and (ii) `exploration', whereby new roads trigger the spatial evolution of the urbanisation front. The empirical identification of such simple elementary mechanisms suggests the existence of general, simple properties of urbanisation and opens new directions for its modelling and quantitative description.Comment: 10 pages, 6 figure

    Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 interface

    Full text link
    With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier density of Ns~5-9x 10E13 cm^-2, an effective mass of m*~3m_e, and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi1-xNbxO3 and therefore suggestive of polaronic correlations of the confined carriers. We also determined the vertical density profile which has a strongly asymmetric shape with a rapid initial decay over the first 2 nm and a pronounced tail that extends to about 11 nm.Comment: 4 pages, 3 figures, 1 EPAPS file (3 figures

    Heart rate variability in association with frequent use of household sprays and scented products in SAPALDIA

    Get PDF
    Background: Household cleaning products are associated with adverse respiratory health outcomes, but the cardiovascular health effects are largely unknown.Objective: We determined if long-term use of household sprays and scented products at home was associated with reduced heart rate variability (HRV), a marker of autonomic cardiac dysfunction.Methods: We recorded 24-hr electrocardiograms in a cross-sectional survey of 581 Swiss adults, 1, 1-3, or 4-7 days/week, unexposed (reference)] of using cleaning sprays, air freshening sprays, and scented products.Results: Decreases in 24-hr SDNN and TP were observed with frequent use of all product types, but the strongest reductions were associated with air freshening sprays. Compared with unexposed participants, we found that using air freshening sprays 4-7 days/week was associated with 11% [95% confidence interval (CI): -20%, -2%] and 29% (95% CI: -46%, -8%) decreases in 24-hr SDNN and TP, respectively. Inverse associations of 24-SDNN and TP with increased use of cleaning sprays, air freshening sprays, and scented products were observed mainly in participants with obstructive lung disease (p > 0.05 for interactions).Conclusions: In predominantly older adult women, long-term frequent use of household spray and scented products was associated with reduced HRV, which suggests an increased risk of cardiovascular health hazards. People with preexisting pulmonary conditions may be more susceptibl

    Higher gait variability is associated with decreased parietal gray matter volume among healthy older adults

    Get PDF
    The objectives of this study were to examine the association of stride time variability (STV) with gray and white matter volumes in healthy older adults, and to determine the specific location of any parenchymal loss associated with higher STV. A total of 71 participants (mean age 69.0 +/- 0.8 years; 59.7 % female) were included in this study. All participants had a 1.0 Tesla 3D T1-weighted MRI of the brain to measure gray and white matter volumes. STV was measured at steady-state self-selected walking speed using an electronic footswitch system. We found an association between higher STV and lower gray matter volume in the right parietal lobe (e.g., angular gyrus, Brodmann area 39, cluster corrected pFWE = 0.035). There were no significant associations between STV and higher gray matter volume or change in white matter volume. To the best of our knowledge this study is the first to identify a significant association of higher STV with lower right parietal gray matter volume in healthy older adults

    Levinson's Theorem for Dirac Particles

    Full text link
    Levinson's theorem for Dirac particles constraints the sum of the phase shifts at threshold by the total number of bound states of the Dirac equation. Recently, a stronger version of Levinson's theorem has been proven in which the value of the positive- and negative-energy phase shifts are separately constrained by the number of bound states of an appropriate set of Schr\"odinger-like equations. In this work we elaborate on these ideas and show that the stronger form of Levinson's theorem relates the individual phase shifts directly to the number of bound states of the Dirac equation having an even or odd number of nodes. We use a mean-field approximation to Walecka's scalar-vector model to illustrate this stronger form of Levinson's theorem. We show that the assignment of bound states to a particular phase shift should be done, not on the basis of the sign of the bound-state energy, but rather, in terms of the nodal structure (even/odd number of nodes) of the bound state.Comment: Latex with Revtex, 7 postscript figures (available from the author), SCRI-06109
    corecore