964 research outputs found
Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model
Acknowledgements This study was possible by partial financial support from the following Brazilian government agencies: CNPq, CAPES, and FAPESP (2011/19296-1 and 2015/07311-7). We also wish thank Newton Fund and COFAP.Peer reviewedPostprin
Statistics of finite-time Lyapunov exponents in the Ulam map
The statistical properties of finite-time Lyapunov exponents at the Ulam
point of the logistic map are investigated. The exact analytical expression for
the autocorrelation function of one-step Lyapunov exponents is obtained,
allowing the calculation of the variance of exponents computed over time
intervals of length . The variance anomalously decays as . The
probability density of finite-time exponents noticeably deviates from the
Gaussian shape, decaying with exponential tails and presenting spikes
that narrow and accumulate close to the mean value with increasing . The
asymptotic expression for this probability distribution function is derived. It
provides an adequate smooth approximation to describe numerical histograms
built for not too small , where the finiteness of bin size trimmes the sharp
peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.
Conformational study and reassessment of the vibrational assignments for Norspermidine
The present study presents and discusses the conformational preferences of Norspermidine (NSpd). The effects of varying the dielectric constant on the conformational preferences are discussed, with a view to infer which conformation will correspond to the most stable in the pure condensed liquid phase. Within the same context, a set of NSpd-NH3 molecular adducts were simulated in order to determine the relevance of intermolecular hydrogen bonding on the overall stability and relative positioning of the respective vibrational frequencies. The calculations presently performed allowed a reassessment of the vibrational assignments for NSpd. A full assignment of the NSpd vibrational spectra is presented, with special emphasis being given to the vibrational modes that proved to be most affected by hydrogen bonding. The various inconsistencies of a prior study found in the literature were identified and rectified
Efficiency of free energy calculations of spin lattices by spectral quantum algorithms
Quantum algorithms are well-suited to calculate estimates of the energy
spectra for spin lattice systems. These algorithms are based on the efficient
calculation of the discrete Fourier components of the density of states. The
efficiency of these algorithms in calculating the free energy per spin of
general spin lattices to bounded error is examined. We find that the number of
Fourier components required to bound the error in the free energy due to the
broadening of the density of states scales polynomially with the number of
spins in the lattice. However, the precision with which the Fourier components
must be calculated is found to be an exponential function of the system size.Comment: 9 pages, 4 figures; corrected typographical and minor mathematical
error
Model for tumour growth with treatment by continuous and pulsed chemotherapy
Peer reviewedPreprin
On the Dynamics of Bianchi IX cosmological models
A cosmological description of the universe is proposed in the context of
Hamiltonian formulation of a Bianchi IX cosmology minimally coupled to a
massless scalar field. The classical and quantum results are studied with
special attention to the case of closed Friedmann-Robertson-Walker model.Comment: 11 pages, 1 figur
Complex transitions to synchronization in delay-coupled networks of logistic maps
A network of delay-coupled logistic maps exhibits two different
synchronization regimes, depending on the distribution of the coupling delay
times. When the delays are homogeneous throughout the network, the network
synchronizes to a time-dependent state [Atay et al., Phys. Rev. Lett. 92,
144101 (2004)], which may be periodic or chaotic depending on the delay; when
the delays are sufficiently heterogeneous, the synchronization proceeds to a
steady-state, which is unstable for the uncoupled map [Masoller and Marti,
Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from
time-dependent to steady-state synchronization as the width of the delay
distribution increases. We also compare the two transitions to synchronization
as the coupling strength increases. We use transition probabilities calculated
via symbolic analysis and ordinal patterns. We find that, as the coupling
strength increases, before the onset of steady-state synchronization the
network splits into two clusters which are in anti-phase relation with each
other. On the other hand, with increasing delay heterogeneity, no cluster
formation is seen at the onset of steady-state synchronization; however, a
rather complex unsynchronized state is detected, revealed by a diversity of
transition probabilities in the network nodes
Anomalous synchronization threshold in coupled logistic maps
We consider regular lattices of coupled chaotic maps. Depending on lattice
size, there may exist a window in parameter space where complete
synchronization is eventually attained after a transient regime. Close outside
this window, an intermittent transition to synchronization occurs. While
asymptotic transversal Lyapunov exponents allow to determine the
synchronization threshold, the distribution of finite-time Lyapunov exponents,
in the vicinity of the critical frontier, is expected to provide relevant
information on phenomena such as intermittency. In this work we scrutinize the
distribution of finite-time exponents when the local dynamics is ruled by the
logistic map . We obtain a theoretical estimate for the
distribution of finite-time exponents, that is markedly non-Gaussian. The
existence of correlations, that spoil the central limit approximation, is shown
to modify the typical intermittent bursting behavior. The present scenario
could apply to a wider class of systems with different local dynamics and
coupling schemes.Comment: 6 pages, 6 figure
Validity of numerical trajectories in the synchronization transition of complex systems
We investigate the relationship between the loss of synchronization and the
onset of shadowing breakdown {\it via} unstable dimension variability in
complex systems. In the neighborhood of the critical transition to strongly
non-hyperbolic behavior, the system undergoes on-off intermittency with respect
to the synchronization state. There are potentially severe consequences of
these facts on the validity of the computer-generated trajectories obtained
from dynamical systems whose synchronization manifolds share the same
non-hyperbolic properties.Comment: 4 pages, 4 figure
- …
