3,515 research outputs found

    Israel\u27s Transboundary Water Disputes

    Get PDF
    As water is necessary to the function of life, it is imperative to understand the role of water in the politically turbulent Middle East. This paper will focus on Israel’s water disputes with her neighbors and how such disputes have either led to military confrontation, have been partially resolved, and otherwise continue to exist. As populations in the region are expected to increase, the need for water, already in short supply, will be magnified. Thus negotiations to settle water disputes and provide for equitable distribution of the water resources will become more contentious. This legal analysis of Israel’s water disputes will hopefully provide some guidance to the settlement of such issues in Israel’s future peace negotiations with the Syrians and Palestinians

    Intensity limits of the PSI Injector II cyclotron

    Full text link
    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ~ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted

    On the accuracy of Monte Carlo based beam dynamics models for the degrader in proton therapy facilities

    Full text link
    In a cyclotron-based proton therapy facility, the energy changes are performed by means of a degrader of variable thickness. The interaction of the proton beam with the degrader creates energy tails and increases the beam emittance. A precise model of the degraded beam properties is important not only to better understand the performance of a facility already in operation, but also to support the development of new proton therapy concepts. The exact knowledge of the degraded beam properties, in terms of energy spectrum and transverse phase space, depends on the model used to describe the proton interaction with the degrader material. In this work the model of a graphite degrader has been developed with four Monte Carlo codes: three conventional Monte Carlo codes (FLUKA, GEANT4 and MCNPX) and the multi-purpose particle tracking code OPAL equipped with a simplified Monte Carlo routine. From the comparison between the different codes, we can deduce how the accuracy of the degrader model influences the precision of the beam dynamics model of a possible transport line downstream of the degrader

    Evolution of a beam dynamics model for the transport lines in a proton therapy facility

    Full text link
    Despite the fact that the first-order beam dynamics models allow an approximated evaluation of the beam properties, their contribution is essential during the conceptual design of an accelerator or beamline. However, during the commissioning some of their limitations appear in the comparison against measurements. The extension of the linear model to higher order effects is, therefore, demanded. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the performance of the facility, a more precise model was required and has been developed with the multi-particle open source beam dynamics code called OPAL (Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g. degrader, collimators, scattering foils and air gaps) on the beam emittance and energy spread can be analysed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the OPAL model has been confirmed by numerous measurements.Comment: 17 pages, 19 figure

    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on both sides of the Scandinavian mountains: a case study on 19/20 January 2003

    No full text
    International audienceAtmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U. Bonn lidar at the Esrange and the ALOMAR RMR lidar at the Andøya Rocket Range are located in northern Scandinavia 250 km apart on either side of the Scandinavian mountain ridge. During January and February 2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January 2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they could propagate and were observed at both lidar stations during these simultaneous measurements. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange containing values from ?z=2?6 km and broad at ALOMAR, covering ?z=1?12 km vertical wavelength. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. These measurements show unambigiously orographically induced gravity waves on both sides of the mountains as well as a clear difference of the characteristics of these waves, which might be caused by different excitation and propagation conditions on either side of the Scandinavian mountain ridge

    Hexa-peri-hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties

    No full text
    Hexa-peri-hexabenzocoronene (HBC)-based donor–acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) “pre-functionalization” of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) “post-functionalization” of monobromo-substituted HBC after the cyclodehydrogenation. The HBC–acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene–acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.</p

    Communication in cross-cultural consultations in primary care in Europe: the case for improvement. The rationale for the RESTORE FP 7 project

    Get PDF
    The purpose of this paper is to substantiate the importance of research about barriers and levers to the implementation of supports for cross-cultural communication in primary care settings in Europe. After an overview of migrant health issues, with the focus on communication in cross-cultural consultations in primary care and the importance of language barriers, we highlight the fact that there are serious problems in routine practice that persist over time and across different European settings. Language and cultural barriers hamper communication in consultations between doctors and migrants, with a range of negative effects including poorer compliance and a greater propensity to access emergency services. It is well established that there is a need for skilled interpreters and for professionals who are culturally competent to address this problem. A range of professional guidelines and training initiatives exist that support the communication in cross-cultural consultations in primary care. However, these are commonly not implemented in daily practice. It is as yet unknown why professionals do not accept or implement these guidelines and interventions, or under what circumstances they would do so. A new study involving six European countries, RESTORE (REsearch into implementation STrategies to support patients of different ORigins and language background in a variety of European primary care settings), aims to address these gaps in knowledge. It uses a unique combination of a contemporary social theory, normalisation process theory (NPT) and participatory learning and action (PLA) research. This should enhance understanding of the levers and barriers to implementation, as well as providing stakeholders, with the opportunity to generate creative solutions to problems experienced with the implementation of such interventions

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E\vec E, B\vec B and P\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains: a case study on 19/20 January 2003

    Get PDF
    Atmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U.&nbsp;Bonn&nbsp;lidar at the Esrange and the ALOMAR RMR lidar at the And&#248;ya Rocket Range are located in northern Scandinavia 250 km apart on the east and west side of the Scandinavian mountain ridge. During January and February&nbsp;2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January&nbsp;2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they were nevertheless observed at both lidar stations with considerable amplitudes during these simultaneous measurements. And while the source of the observed waves cannot be determined unambiguously, the observations show many characteristics of orographically excited gravity waves. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange with values from &lambda;<i><sub>z</sub></i>=2&ndash;6 km and broad at ALOMAR, covering &lambda;<i><sub>z</sub></i>=1&ndash;12 km vertical wavelength. In particular the difference between the observations at ALOMAR and at the Esrange can be understood by different orographic conditions while the propagation conditions were quite similar. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. The meteorological situation during these measurements was different from common winter situations. The ground winds were mostly northerlies, changed in the upper troposphere and lower stratosphere to westerlies and returned to northerlies in the middle stratosphere
    corecore