583 research outputs found
Decreta sacrae Congreg. Concilii J. D.N. Vrbani Papae VIII ius edita de Regularibus Apostatis, [et] Eiectis.
Port. con esc. xil. de los franciscanos
Divus Thomas cum patribus ex prophetis locutus... sive Dissertationes theologicae scholastico-dogmaticae et mystico-doctrinales ... Divi Thomae ... [Texto impreso]
Sign.: [calderon]-3[calderon]4, A-Z4, Aa-Zz4, Aaa-Xxx4Port. a dos tintas con escudo xilTexto a dos col. y apostillas marginalesLas il. son grab. calc.: "Salv. Romaguera del. I.B. Ravanals. scu 1744", en ¶2, y otro grab. :"Salv. Romaguera del. I.B. Ravanals sculp. Val. 1743" en p. 1La h. de grab. calc.: "Salv. Romaguera del. I.B. Ravanals sculp. Val. 1743
Título: Theatrum Sanctorum Patrum: ex decreto sacri Concilii Tridentini editum...
Tít. de la antep.: Theatrum Sanctorum Patrum: ex decreto sacri Concilii Tridentini editum: super Universa Evangelia...Colofón.Sign.: [calderón]7, 2[calderón]8, 3[calderón]-4[calderón]6, A-Z8, 2A-2Y8, 2Z6.Error tipográfico de paginación: se repiten las páginas 44-47 y las páginas 635-636.Texto a dos col.Port. grab. calc. arquitectónica: "Christyaen Knyt fecit
Carta que el R.P.M. Fray Bautista Abad, Vicario provincial del Reyno de Valencia, del Orden de San Agustin escriuio al ... Duque de Veraguas ... : [Texto impreso] [setiembre à 18 de 1680]
Según Medina, Biblioteca Hispanoamericana, VI, 6152, podría estar impresa en Madrid, 1680Tit. tomado de comienzo de textoSegún Medina, Biblioteca Hispanoamericana, VI, 6152, podría estar impresa en Madrid, 1680Texto fechado en: "Setiembre à 18 de 1680"Sign.: A
Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.
BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography
The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives
This study aimed at evaluating the effectiveness of seasoning Cobrancosa table olives in a brine with aromatic ingredients, in order to mask the bitter taste given by KCl when added to reduced-sodium fermentation brines. Olives were fermented in two different salt combinations: Brine A, containing 8% NaCl and, Brine B, a reduced-sodium brine, containing 4% NaCl + 4% KCl. After the fermentation the olives were immersed in seasoning brines with NaCl (2%) and the aromatic herbs (thyme, oregano and calamintha), garlic and lemon. At the end of the fermentation and two weeks after seasoning, the physicochemical, nutritional, organoleptic, and microbiological parameters, were determined. The olives fermented in the reduced-sodium brines had half the sodium concentration, higher potassium and calcium content, a lower caloric level, but were considered, by a sensorial panel, more bitter than olives fermented in NaCl brine. Seasoned table olives, previously fermented in Brine A and Brine B, had no significant differences in the amounts of protein (1.23% or 1.11%), carbohydrates (1.0% or 0.66%), fat (20.0% or 20.5%) and dietary fiber (3.4% or 3.6%). Regarding mineral contents, the sodium-reduced fermented olives, presented one third of sodium, seven times more potassium and three times more calcium than the traditional olives fermented in 8% NaCl. Additionally, according to the panelists' evaluation, seasoning the olives fermented in 4% NaCl + 4% KCl, resulted in a decrease in bitterness and an improvement in the overall evaluation and flavor. Escherichia coli and Salmonella were not found in the olives produced.info:eu-repo/semantics/publishedVersio
Aduertencias para los confessores de los naturales
Sign: [A]-B8, C9, D-P8, [ ]2, A-G8.Portada con escudete xilográfico de los franciscanos
Sanctoral cisterciense : hecho de varios discursos predicables...
Sign.: [calderón]10, a-d8, e2, A-Z8, 2A-2Z8, 3A-3Y8, 3Z3Texto a dos col.Port. con grab. xil.Grab. xil. en v. de [calderón]\b10\s, v. de Y\b8\s y en h. de guarda posterior
Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation
Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin
Potential applications of nanotechnology in thermochemical conversion of microalgal biomass
The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
- …
