2,144 research outputs found

    Analytic and Asymptotic Analysis of Bayesian Cramér-Rao Bound for Dynamical Phase Offset Estimation

    No full text
    International audienceIn this paper, we present a closed-form expression of a Bayesian Cramér-Rao lower bound for the estimation of a dynamical phase offset in a non-data-aided BPSK transmitting context. This kind of bound is derived considering two different scenarios: a first expression is obtained in an off-line context and then, a second expression in an on-line context logically follows. The SNR-asymptotic expressions of this bound drive us to introduce a new asymptotic bound, namely the Asymptotic Bayesian Cramér-Rao Bound. This bound is close to the classical Bayesian bound but is easier to evaluate

    Towards the simulation of the whole manufacturing chain processes with FORGE®

    No full text
    International audienceFollowing the metal composition and the microstructure evolution during the whole manufacturing chain is becoming a key point in the metal forming industry to better understand the processes and reach the increasing quality requirements for the parts. Thus, providing a simulation tool able to model the whole chain becomes critical. Physical phenomena occurring during the processes are nowadays better understood, providing always more relevant models for numerical simulation. However, important numerical challenges still exist in order to be able to run those simulations with the required accuracy. This article shows how FORGE® tackles those issues in order to provide highly accurate microstructure and surface treatments simulation features applied on real industrial processes

    Search for the standard model Higgs boson at LEP

    Get PDF

    Surface ocean iron fertilization: the role of subduction zone and hotspot volcanic ash and fluxes into the Pacific Ocean

    Get PDF
    Surface ocean iron (Fe) fertilization can affect the marine primary productivity (MPP), thereby impacting on CO2 exchanges at the atmosphere-ocean interface and eventually on climate. Mineral (aeolian or desert) dust is known to be a major atmospheric source for the surface ocean biogeochemical iron cycle, but the significance of volcanic ash is poorly constrained. We present the results of geochemical experiments aimed at determining the rapid release of Fe upon contact of pristine volcanic ash with seawater, mimicking their dry deposition into the surface ocean. Our data show that volcanic ash from both subduction zone and hot spot volcanoes (n = 44 samples) rapidly mobilized significant amounts of soluble Fe into seawater (35–340 nmol/g ash), with a suggested global mean of 200 ± 50 nmol Fe/g ash. These values are comparable to the range for desert dust in experiments at seawater pH (10–125 nmol Fe/g dust) presented in the literature (Guieu et al., 1996; Spokes et al., 1996). Combining our new Fe release data with the calculated ash flux from a selected major eruption into the ocean as a case study demonstrates that single volcanic eruptions have the potential to significantly increase the surface ocean Fe concentration within an ash fallout area. We also constrain the long-term (millennial-scale) airborne volcanic ash and mineral dust Fe flux into the Pacific Ocean by merging the Fe release data with geological flux estimates. These show that the input of volcanic ash into the Pacific Ocean (128–221 × 1015 g/ka) is within the same order of magnitude as the mineral dust input (39–519 × 1015 g/ka) (Mahowald et al., 2005). From the similarity in both Fe release and particle flux follows that the flux of soluble Fe related to the dry deposition of volcanic ash (3–75 × 109 mol/ka) is comparable to that of mineral dust (1–65 × 109 mol/ka). Our study therefore suggests that airborne volcanic ash is an important but hitherto underestimated atmospheric source for the Pacific surface ocean biogeochemical iron cycle
    corecore