7 research outputs found
Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years
The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa
Review of the projected impacts of climate change on coastal fishes in southern Africa
The coastal zone represents one of the most economically and ecologically important ecosystems on the planet, none more so than in southern Africa. This manuscript examines the potential impacts of climate change on the coastal fishes in southern Africa and provides some of the first information for the Southern Hemisphere, outside of Australasia. It begins by describing the coastal zone in terms of its physical characteristics, climate, fish biodiversity and fisheries. The region is divided into seven biogeographical zones based on previous descriptions and interpretations by the authors. A global review of the impacts of climate change on coastal zones is then applied to make qualitative predictions on the likely impacts of climate change on migratory, resident, estuarine-dependent and catadromous fishes in each of these biogeographical zones. In many respects the southern African region represents a microcosm of climate change variability and of coastal habitats. Based on the broad range of climate change impacts and life history styles of coastal fishes, the predicted impacts on fishes will be diverse. If anything, this review reveals our lack of fundamental knowledge in this field, in particular in southern Africa. Several research priorities, including the need for process-based fundamental research programs are highlighted
Broadening not strengthening of the Agulhas Current since the early 1990s
Western boundary currents-such as the Agulhas Current in the Indian Ocean-carry heat poleward, moderating Earth's climate and fuelling the mid-latitude storm tracks. They could exacerbate or mitigate warming and extreme weather events in the future, depending on their response to anthropogenic climate change. Climate models show an ongoing poleward expansion and intensification of the global wind systems, most robustly in the Southern Hemisphere, and linear dynamical theory suggests that western boundary currents will intensify and shift poleward as a result. Observational evidence of such changes comes from accelerated warming and air-sea heat flux rates within all western boundary currents, which are two or three times faster than global mean rates. Here we show that, despite these expectations, the Agulhas Current has not intensified since the early 1990s. Instead, we find that it has broadened as a result of more eddy activity. Recent analyses of other western boundary currents-the Kuroshio and East Australia currents-hint at similar trends. These results indicate that intensifying winds may be increasing the eddy kinetic energy of boundary currents, rather than their mean flow. This could act to decrease poleward heat transport and increase cross-frontal exchange of nutrients and pollutants between the coastal ocean and the deep ocean. Sustained in situ measurements are needed to properly understand the role of these current systems in a changing climate
