5,469 research outputs found
The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit
Recent ATLAS data significantly extend the exclusion limits for
supersymmetric particles. We examine the impact of such data on global fits of
the constrained minimal supersymmetric standard model (CMSSM) to indirect and
cosmological data. We calculate the likelihood map of the ATLAS search, taking
into account systematic errors on the signal and on the background. We validate
our calculation against the ATLAS determinaton of 95% confidence level
exclusion contours. A previous CMSSM global fit is then re-weighted by the
likelihood map, which takes a bite at the high probability density region of
the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has
clarified explanation of our handling of signal systematic
Reconstructing particle masses from pairs of decay chains
A method is proposed for determining the masses of the new particles N,X,Y,Z
in collider events containing a pair of effectively identical decay chains Z to
Y+jet, Y to X+l_1, X to N+l_2, where l_1, l_2 are opposite-sign same-flavour
charged leptons and N is invisible. By first determining the upper edge of the
dilepton invariant mass spectrum, we reduce the problem to a curve for each
event in the 3-dimensional space of mass-squared differences. The region
through which most curves pass then determines the unknown masses. A
statistical approach is applied to take account of mismeasurement of jet and
missing momenta. The method is easily visualized and rather robust against
combinatorial ambiguities and finite detector resolution. It can be successful
even for small event samples, since it makes full use of the kinematical
information from every event.Comment: 12 pages, 5 figure
Measuring Invisible Particle Masses Using a Single Short Decay Chain
We consider the mass measurement at hadron colliders for a decay chain of two
steps, which ends with a missing particle. Such a topology appears as a
subprocess of signal events of many new physics models which contain a dark
matter candidate. From the two visible particles coming from the decay chain,
only one invariant mass combination can be formed and hence it is na\"ively
expected that the masses of the three invisible particles in the decay chain
cannot be determined from a single end point of the invariant mass
distribution. We show that the event distribution in the
vs. invariant mass-squared plane, where , are the transverse
energies of the two visible particles, contains the information of all three
invisible particle masses and allows them to be extracted individually. The
experimental smearing and combinatorial issues pose challenges to the mass
measurements. However, in many cases the three invisible particle masses in the
decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure
SUSY parameter determination at the LHC using cross sections and kinematic edges
We study the determination of supersymmetric parameters at the LHC from a
global fit including cross sections and edges of kinematic distributions. For
illustration, we focus on a minimal supergravity scenario and discuss how well
it can be constrained at the LHC operating at 7 and 14 TeV collision energy,
respectively. We find that the inclusion of cross sections greatly improves the
accuracy of the SUSY parameter determination, and allows to reliably extract
model parameters even in the initial phase of LHC data taking with 7 TeV
collision energy and 1/fb integrated luminosity. Moreover, cross section
information may be essential to study more general scenarios, such as those
with non-universal gaugino masses, and distinguish them from minimal,
universal, models.Comment: 22 pages, 8 figure
Immunogenetics in SARS: a case-control study.
Key Messages:
1. Human leukocyte antigen (HLA) genotypes from 102 SARS patients (susceptible) and 108 SARS contacts
(resistant) were obtained.
2. Allelic frequencies of the Class I (HLA-A, -B, and -Cw) and Class II (HLA-DR and -DQ) genes from these
genetically unrelated subjects were compared.
3. A significantly higher frequency of DRB4*01010101 was found in the SARS-susceptible than SARS-resistant
group. In contrast, significantly higher frequencies of HLA-B*1502 and HLADRB3*030101 were found
in the SARS-resistant than SARSsusceptible group. However, none of these associations was significant after Bonferroni correction. Further, analysis of 10/36 genetically related families did not reveal any HLA alleles associated with SARS susceptibility or resistance.
4. We could not confirm previous findings of an HLA association with susceptibility or resistance to SARS. The significance of these associations needs to be validated by further independent studies.published_or_final_versio
Superpartner spectrum of minimal gaugino-gauge mediation
We evaluate the sparticle mass spectrum in the minimal four-dimensional
construction that interpolates between gaugino and ordinary gauge mediation at
the weak scale. We find that even in the hybrid case -- when the messenger
scale is comparable to the mass of the additional gauge particles -- both the
right-handed as well as the left-handed sleptons are lighter than the bino in
the low-scale mediation regime. This implies a chain of lepton production and,
consequently, striking signatures that may be probed at the LHC already in the
near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title
change
Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders
We study methods for reconstructing the momenta of invisible particles in
cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY
and UED, in which new physics particles are pair produced. Their subsequent
decays lead to two decay chains ending with neutral stable particles escaping
detection. Assuming that the masses of the decaying particles are already
measured, we obtain the momenta by imposing the mass-shell constraints. Using
this information, we develop techniques of determining spins of particles in
theories beyond the standard model. Unlike the methods relying on Lorentz
invariant variables, this method can be used to determine the spin of the
particle which initiates the decay chain. We present two complementary ways of
applying our method by using more inclusive variables relying on kinematic
information from one decay chain, as well as constructing correlation variables
based on the kinematics of both decay chains in the same event.Comment: Version to appear in JHE
New Fe-based superconductors: properties relevant for applications
Less than two years after the discovery of high temperature superconductivity
in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe
layers (1111, 122, 11, 111) are available. They share several characteristics
with cuprate superconductors that compromise easy applications, such as the
layered structure, the small coherence length, and unconventional pairing, On
the other hand the Fe-based superconductors have metallic parent compounds, and
their electronic anisotropy is generally smaller and does not strongly depend
on the level of doping, the supposed order parameter symmetry is s wave, thus
in principle not so detrimental to current transmission across grain
boundaries. From the application point of view, the main efforts are still
devoted to investigate the superconducting properties, to distinguish intrinsic
from extrinsic behaviours and to compare the different families in order to
identify which one is the fittest for the quest for better and more practical
superconductors. The 1111 family shows the highest Tc, huge but also the most
anisotropic upper critical field and in-field, fan-shaped resistive transitions
reminiscent of those of cuprates, while the 122 family is much less anisotropic
with sharper resistive transitions as in low temperature superconductors, but
with about half the Tc of the 1111 compounds. An overview of the main
superconducting properties relevant to applications will be presented. Upper
critical field, electronic anisotropy parameter, intragranular and
intergranular critical current density will be discussed and compared, where
possible, across the Fe-based superconductor families
On the Spectrum of Direct Gaugino Mediation
In direct gauge mediation, the gaugino masses are anomalously small, giving
rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in
a minimal version of "direct gaugino mediation." We find that the sfermion
masses are comparable to those of the gauginos - even in the hybrid
gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde
Supersymmetric particle mass measurement with the boost-corrected contransverse mass
A modification to the contransverse mass (MCT) technique for measuring the
masses of pair-produced semi-invisibly decaying heavy particles is proposed in
which MCT is corrected for non-zero boosts of the centre-of-momentum (CoM)
frame of the heavy states in the laboratory transverse plane. Lack of knowledge
of the mass of the CoM frame prevents exact correction for this boost, however
it is shown that a conservative correction can nevertheless be derived which
always generates an MCT value which is less than or equal to the true value of
MCT in the CoM frame. The new technique is demonstrated with case studies of
mass measurement with fully leptonic ttbar events and with SUSY events
possessing a similar final state.Comment: 33 pages, 33 .eps figures, JHEP3 styl
- …
