69 research outputs found

    Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

    Get PDF

    A mistletoe tale: postglacial invasion of Psittacanthus schiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling

    Full text link

    Clarifications needed concerning the new Article 59 dealing with pleomorphic fungi

    Get PDF
    The new rules formulated in Article 59 of the International Code of Nomenclature for algae, fungi, and plants (ICN) will cause numerous, often undesirable, name changes, when only phylogenetically defined clades are named. Our task is to name fungal taxa and not just clades. Two suggestions are made here that may help to alleviate some disadvantages of the new system. (1) Officially an epithet coined in a list-demoted genus that is older than the oldest one available in the list-accepted genus would have to be recombined in the accepted genus. We recommend that individual authors and committees establishing lists of protected names should generally not recombine older epithets from a demoted genus into the accepted genus, when another one from pre-2013 is available in that genus. (2) Because the concepts of correlated teleomorph and anamorph genera are often incongruent, enforced congruence leads to a loss of information. Retaining the most suitable generic name is imperative, even when this is subordinated to another, list-accepted, generic name. Some kind of cryptic dual generic nomenclature is bound to persist. We therefore strongly recommend the retention of binomials in genera where they are most informative. With these recommendations, the upheaval of fungal nomenclature ensuing from the loss of the former Art. 59 can be reduced to an unavoidable minimum

    Nutritional Capability of and Substrate Suitability for Pseudogymnoascus destructans, the Causal Agent of Bat White-Nose Syndrome

    Get PDF
    Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5–11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at −2.5 MPa with no visible germination at −5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in −5 MPa PEG medium within 14 days suggesting a link between substrate suitability and a
    corecore