11,702 research outputs found

    Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide

    Full text link
    We report on nonlocal spin transport in mesoscopic superconducting aluminum wires in contact with the ferromagnetic insulator europium sulfide. We find spin injection and long-range spin transport in the regime of the exchange splitting induced by europium sulfide. Our results demonstrate that spin transport in superconductors can be manipulated by ferromagnetic insulators, and opens a new path to control spin currents in superconductors.Comment: RevTeX, 5 pages, 5 figure

    Observation of thermoelectric currents in high-field superconductor-ferromagnet tunnel junctions

    Full text link
    We report on the experimental observation of thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about 100 μV/K-100~\mathrm{\mu V/K}, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.Comment: 4 pages, 4 figure

    How unprovable is Rabin's decidability theorem?

    Full text link
    We study the strength of set-theoretic axioms needed to prove Rabin's theorem on the decidability of the MSO theory of the infinite binary tree. We first show that the complementation theorem for tree automata, which forms the technical core of typical proofs of Rabin's theorem, is equivalent over the moderately strong second-order arithmetic theory ACA0\mathsf{ACA}_0 to a determinacy principle implied by the positional determinacy of all parity games and implying the determinacy of all Gale-Stewart games given by boolean combinations of Σ20{\bf \Sigma^0_2} sets. It follows that complementation for tree automata is provable from Π31\Pi^1_3- but not Δ31\Delta^1_3-comprehension. We then use results due to MedSalem-Tanaka, M\"ollerfeld and Heinatsch-M\"ollerfeld to prove that over Π21\Pi^1_2-comprehension, the complementation theorem for tree automata, decidability of the MSO theory of the infinite binary tree, positional determinacy of parity games and determinacy of Bool(Σ20)\mathrm{Bool}({\bf \Sigma^0_2}) Gale-Stewart games are all equivalent. Moreover, these statements are equivalent to the Π31\Pi^1_3-reflection principle for Π21\Pi^1_2-comprehension. It follows in particular that Rabin's decidability theorem is not provable in Δ31\Delta^1_3-comprehension.Comment: 21 page

    Observation of Andreev bound states at spin-active interfaces

    Full text link
    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.Comment: 4 pages, 4 figures, revte

    Microfabricated high-finesse optical cavity with open access and small volume

    No full text
    We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network

    The nature of the hard state of Cygnus X-3

    Full text link
    The X-ray binary Cygnus X-3 is a highly variable X-ray source that displays a wide range of observed spectral states. One of the main states is significantly harder than the others, peaking at ~ 20 keV, with only a weak low-energy component. Due to the enigmatic nature of this object, hidden inside the strong stellar wind of its Wolf-Rayet companion, it has remained unclear whether this state represents an intrinsic hard state, with truncation of the inner disc, or whether it is just a result of increased local absorption. We study the X-ray light curves from RXTE/ASM and CGRO/BATSE in terms of distributions and correlations of flux and hardness and find several signs of a bimodal behaviour of the accretion flow that are not likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We find that it can be well described by a model of a hard state with a truncated disc, despite the low cut-off energy, if the accreted power is supplied to the electrons in the inner flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron distribution and a spectrum with a significant contribution from non-thermal Comptonization, usually observed only in soft states. The high luminosity of this non-thermal hard state implies that either the transition takes place at significantly higher L/Ledd than in the usual advection models, or the mass of the compact object is > 20 Msun, possibly making it the most massive black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model as well as a model of almost pure Compton reflection also fit the data well, but both have difficulties explaining other results, in particular the radio/X-ray correlation.Comment: 14 pages, 13 figures, submitted to MNRA
    corecore