979 research outputs found
Ethnic differences in adiposity and diabetes risk – insights from genetic studies
Type 2 diabetes is more common in non-Europeans and starts at a younger age and at lower BMI cut-offs. This review discusses the insights from genetic studies about pathophysiological mechanisms which determine risk of disease with a focus on the role of adiposity and body fat distribution in ethnic disparity in risk of type 2 diabetes. During the past decade, genome-wide association studies (GWAS) have identified more than 400 genetic variants associated with the risk of type 2 diabetes. The Eurocentric nature of these genetic studies have made them less effective in identifying mechanisms that make non-Europeans more susceptible to higher risk of disease. One possible mechanism suggested by epidemiological studies is the role of ethnic difference in body fat distribution. Using genetic variants associated with an ability to store extra fat in a safe place, which is subcutaneous adipose tissue, we discuss how different ethnic groups could be genetically less susceptible to type 2 diabetes by developing a more favourable fat distribution
Psoas major cross-sectional area: A potential marker of cardiorespiratory fitness
Background and Aim: Cardiorespiratory fitness is an important marker for overall health that significantly correlates with obesity-associated morbidities and mortality. Maximal oxygen uptake (VO2max) recorded during an incremental exercise test is the gold standard assessment for aerobic fitness. However, its cost, chronic illness, and frailty often preclude its application. The cross-sectional area (CSA) of the abdominal psoas major muscle is a predictor of sarcopenia and surgery outcomes and represents a promising biomarker for cardiorespiratory health. Therefore, in the present study, we have planned to assess the relationship between psoas major CSA, anthropometry, and body composition in a UK-based cohort of 210 men and women. Methods: Body mass (kg), height (cm), waist circumference (cm), VO2max, and blood pressure were measured in each participant. The CSA of psoas major, rectus abdominus, and another abdominal muscle of the core muscle group were assessed. Results: Following adjustment for height, psoas major CSA was found to be a significant predictor of percentage body fat (P = 0.02) in men, and body mass index (BMI) in both men (P = 0.015) and women (P = 0.004). We found psoas major CSA correlated more strongly with VO2max (r = 0.74, P < 0.01) than any other study outcome, including age and BMI. Conclusion: Psoas major muscle CSA represents an accurate, reproducible, and time-efficient surrogate for cardiorespiratory fitness and body composition
A Framework for Morphological Feature Extraction of Organs from MR Images for Detection and Classification of Abnormalities
In clinical practice, a misdiagnosis can lead to incorrect or delayed treatment, and in some cases, no treatment at all; consequently, the condition of a patient may worsen to varying degrees, in some cases proving fatal. The accurate 3D reconstruction of organs, which is a pioneering tool of medical image computing (MIC) technology, plays a key role in computer aided diagnosis (CADx), thereby enabling medical professionals to perform enhanced analysis on a region of interest. From here, the shape and structure of the organ coupled with measurements of its volume and curvature can provide significant guidance towards establishing the severity of a disorder or abnormality, consequently supporting improved diagnosis and treatment planning. Moreover, the classification and stratification of organ abnormalities is widely utilised within biomedical, forensic and MIC research for exploring and investigating organ deformations following injury, illness or trauma. This paper presents a tool that calculates, classifies and analyses pancreatic volume and curvature following their 3D reconstruction. Magnetic resonance imaging (MRI) volumes of 115 adult patients are evaluated in order to examine a correlation between these two variables. Such a tool can be utilised in the scope of much greater research and investigation. It can also be incorporated into the development of effective medical image analysis software application in the stratification of subjects and targeting of therapies
Preterm nutritional intake and MRI phenotype at term age: a prospective observational study
Objective: To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes.
Design: Prospective observational study.
Setting: UK tertiary neonatal unit.
Participants: Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39)
Main outcome measures: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants.
Results: Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=−0.58, p=0.01).
Conclusions: Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms
Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis
Background
A non-invasive method to grade the severity of steatohepatitis and liver fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases.
Methods
First, we performed a genome-wide association study (GWAS) in 14,440 Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures.
Results
We identified six independent genetic variants associated with liver cT1 that reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated transaminases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective.
Conclusion
The association between two metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at risk individuals
A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes.
BACKGROUND:
Fat infiltration of the liver, muscle and pancreas is associated with insulin resistance and risk of diabetes. Weight loss reduces ectopic fat deposition and risk of diabetes, but is difficult to sustain to due to compensatory increases in appetite. Fermentable carbohydrates have been shown to decrease appetite and food intake, and promote weight loss in overweight subjects. In animal studies, fermentable carbohydrate reduces ectopic fat independent of weight loss. We aimed to investigate the effect of the fermentable carbohydrate inulin on weight maintenance, appetite and ectopic fat in subjects with prediabetes.
METHODS:
Forty-four subjects with prediabetes were randomized to 18 weeks' inulin or cellulose supplementation. During weeks 1-9 (weight loss phase) all subjects had four visits with a dietitian to guide them towards a 5 % weight loss. During weeks 10-18 (weight maintenance phase) subjects continued taking their assigned supplementation and were asked to maintain the weight they had lost but were offered no further support. All subjects attended study sessions at baseline, 9 and 18 weeks for measurement of weight; assessment of adipose tissue and ectopic fat content by magnetic resonance imaging and magnetic resonance spectroscopy; glucose, insulin and GLP-1 levels following a meal tolerance test; and appetite by ad libitum meal test and visual analogue scales.
RESULTS:
Both groups lost approximately 5 % of their body weight by week nine (-5.3 ± 0.1 % vs -4.3 ± 0.4 %, p = 0.13, but the inulin group lost significantly more weight between 9 and 18 weeks (-2.3 ± 0.5 % vs -0.6 ± 0.4 %, p = 0.012). Subjects taking inulin had lower hepatic (p = 0.02) and soleus muscle (p < 0.05) fat content at 18 weeks compared to control even after controlling for weight loss and consumed less at the ad libitum meal test (p = 0.027). Fasting glucose significantly decreased at week nine only (p = 0.005), insulin concentrations did not change, and there was a significant increase in GLP-1 in the cellulose group at 9 and 18 weeks (p < 0.03, p < 0.00001).
CONCLUSION:
Inulin may have a two-pronged effect on the risk of diabetes by 1) promoting weight loss 2) reducing intrahepatocellular and intramyocellular lipid in people with prediabetes independent of weight loss
Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity
We investigate the stability of negative image equilibria in mean synaptic
weight dynamics governed by spike-timing dependent plasticity (STDP). The
neural architecture of the model is based on the electrosensory lateral line
lobe (ELL) of mormyrid electric fish, which forms a negative image of the
reafferent signal from the fish's own electric discharge to optimize detection
of external electric fields. We derive a necessary and sufficient condition for
stability, for arbitrary postsynaptic potential functions and arbitrary
learning rules. We then apply the general result to several examples of
biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16
subfigure
Recommended from our members
Efficacy of increased resistant starch consumption in human type 2 diabetes
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1
Efficacy and safety of Cannabidiol and Tetrahydrocannabivarin on glycemic and lipid parameters in patients with Type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study
OBJECTIVE Cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled study, 62 subjects with noninsulin-treated type 2 diabetes were randomized to five treatment arms: CBD (100 mg twice daily), THCV (5 mg twice daily), 1:1 ratio of CBD and THCV (5 mg/5 mg, twice daily), 20:1 ratio of CBD and THCV (100 mg/5 mg, twice daily), or matched placebo for 13 weeks. The primary end point was a change in HDL-cholesterol concentrations from baseline. Secondary/tertiary end points included changes in glycemic control, lipid profile, insulin sensitivity, body weight, liver triglyceride content, adipose tissue distribution, appetite, markers of inflammation, markers of vascular function, gut hormones, circulating endocannabinoids, and adipokine concentrations. Safety and tolerability end points were also evaluated.
RESULTS Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = −1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = −44.51 points; P < 0.01]), adiponectin (ETD = −5.9 × 106 pg/mL; P < 0.01), and apolipoprotein A (ETD = −6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (−898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated.
CONCLUSIONS THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes
- …
