10,636 research outputs found
Application of Permutation Group Theory in Reversible Logic Synthesis
The paper discusses various applications of permutation group theory in the
synthesis of reversible logic circuits consisting of Toffoli gates with
negative control lines. An asymptotically optimal synthesis algorithm for
circuits consisting of gates from the NCT library is described. An algorithm
for gate complexity reduction, based on equivalent replacements of gates
compositions, is introduced. A new approach for combining a group-theory-based
synthesis algorithm with a Reed-Muller-spectra-based synthesis algorithm is
described. Experimental results are presented to show that the proposed
synthesis techniques allow a reduction in input lines count, gate complexity or
quantum cost of reversible circuits for various benchmark functions.Comment: In English, 15 pages, 2 figures, 7 tables. Proceeding of the RC 2016
conferenc
Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics
Quantum state transformations and the Schubert calculus
Recent developments in mathematics have provided powerful tools for comparing
the eigenvalues of matrices related to each other via a moment map. In this
paper we survey some of the more concrete aspects of the approach with a
particular focus on applications to quantum information theory. After
discussing the connection between Horn's Problem and Nielsen's Theorem, we move
on to characterizing the eigenvalues of the partial trace of a matrix.Comment: 40 pages. Accepted for publication in Annals of Physic
Quantification of Continuous Variable Entanglement with only Two Types of Simple Measurements
Here we propose an experimental set-up in which it is possible to measure the
entanglement of a two-mode Gaussian state, be it pure or mixed, using only
simple linear optical devices. After a proper unitary manipulation of the
two-mode Gaussian state only number and purity measurements of just one of the
modes suffice to give us a complete and exact knowledge of the state's
entanglement.Comment: v1: 4 pages, 1 figure, RevTex4; v2: Title and abstract changed, new
discussion paragraph added; v3: published versio
Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.
Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
Prospects for ACT: simulations, power spectrum, and non-Gaussian analysis
A new generation of instruments will reveal the microwave sky at high
resolution. We focus on one of these, the Atacama Cosmology Telescope, which
probes scales 1000<l<10000, where both primary and secondary anisotropies are
important. Including lensing, thermal and kinetic Sunyaev-Zeldovich (SZ)
effects, and extragalactic point sources, we simulate the telescope's
observations of the CMB in three channels, then extract the power spectra of
these components in a multifrequency analysis. We present results for various
cases, differing in assumed knowledge of the contaminating point sources. We
find that both radio and infrared point sources are important, but can be
effectively eliminated from the power spectrum given three (or more) channels
and a good understanding of their frequency dependence. However, improper
treatment of the scatter in the point source frequency dependence relation may
introduce a large systematic bias. Even if all thermal SZ and point source
effects are eliminated, the kinetic SZ effect remains and corrupts measurements
of the primordial slope and amplitude on small scales. We discuss the
non-Gaussianity of the one-point probability distribution function as a way to
constrain the kinetic SZ effect, and we develop a method for distinguishing
this effect from the CMB in a window where they overlap. This method provides
an independent constraint on the variance of the CMB in that window and is
complementary to the power spectrum analysis.Comment: 22 pages, 11 figures. Submitted to New Astronomy. High resolution
figures provided at
http://www.princeton.edu/~khuffenb/pubs/prospects-act.htm
Ramsey interference in a multilevel quantum system
We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped spin in a quantum dot in a Faraday geometry magnetic field
The experience of enchantment in human-computer interaction
Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p
Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability
Physical limits of inference
I show that physical devices that perform observation, prediction, or
recollection share an underlying mathematical structure. I call devices with
that structure "inference devices". I present a set of existence and
impossibility results concerning inference devices. These results hold
independent of the precise physical laws governing our universe. In a limited
sense, the impossibility results establish that Laplace was wrong to claim that
even in a classical, non-chaotic universe the future can be unerringly
predicted, given sufficient knowledge of the present. Alternatively, these
impossibility results can be viewed as a non-quantum mechanical "uncertainty
principle". Next I explore the close connections between the mathematics of
inference devices and of Turing Machines. In particular, the impossibility
results for inference devices are similar to the Halting theorem for TM's.
Furthermore, one can define an analog of Universal TM's (UTM's) for inference
devices. I call those analogs "strong inference devices". I use strong
inference devices to define the "inference complexity" of an inference task,
which is the analog of the Kolmogorov complexity of computing a string. However
no universe can contain more than one strong inference device. So whereas the
Kolmogorov complexity of a string is arbitrary up to specification of the UTM,
there is no such arbitrariness in the inference complexity of an inference
task. I end by discussing the philosophical implications of these results,
e.g., for whether the universe "is" a computer.Comment: 43 pages, updated version of Physica D version, which originally
appeared in 2007 CNLS conference on unconventional computatio
- …
