47,224 research outputs found

    Pilot evaluation of sailplane handling qualities

    Get PDF
    The evaluation sailplanes were found generally deficient in the area of cockpit layout. The pilots indicated general dissatisfaction with high pitch sensitivity especially when coupled with inertially induced stick forces. While all sailplanes were judged satisfactory for centering thermals and in the ease of speed control in circling flight, pilot opinions diverged on the maneuvering response, pull-out characteristics from a dive, and on phugoid damping. Lateral-directional control problems were noted mainly during takeoff and landing for most sailplanes with the landing wheel ahead of center of gravity. Pilot opinion of in-flight lateral-directional stability and control was generally satisfactory. Five of the evaluation sailplanes exhibited a very narrow airspeed band in which perceptible stall warning buffet occurred. However, this characteristic was considered not objectionable when stall recovery was easy. The pilots objected to the characteristics of a wide airspeed band of stall warning followed by a stall with yawing and rolling tendency and substantial loss of altitude during the stall. Glide path control for the evaluation sailplanes was found to be generally objectionable

    Study made of resistance of stainless steels to zinc-vapor corrosion

    Get PDF
    Study of the corrosion resistance of several stainless steels to zinc vapor revealed that some stainless steels could be employed for use in zinc processing equipment housings or vapor lines

    Method for constructing periodic orbits in nonlinear dynamic systems

    Get PDF
    Method is modification of generalized Newton-Ralphson algorithm for analyzing two-point boundary problems. It constructs sequence of solutions that converge to precise dynamic solution in the sequence limit. Program calculates periodic orbits in either circular or elliptical restricted three-body problems

    A Parallel-Propagating Alfv\'enic Ion-Beam Instability in the High-Beta Solar Wind

    Full text link
    We investigate the conditions under which parallel-propagating Alfv\'en/ion-cyclotron waves are driven unstable by an isotropic (Tα=TαT_{\perp \alpha} = T_{\parallel\alpha}) population of alpha particles drifting parallel to the magnetic field at an average speed UαU_{\alpha} with respect to the protons. We derive an approximate analytic condition for the minimum value of UαU_{\alpha} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is 5\simeq 5% of the proton number density and the two species have similar thermal speeds, the instability requires that βp1\beta_{\rm p} \gtrsim 1, where βp\beta_{\rm p} is the ratio of the proton pressure to the magnetic pressure. For 1βp121\lesssim \beta_{\mathrm p}\lesssim 12, the minimum UαU_{\alpha} needed to excite this instability ranges from 0.7vA0.7v_{\mathrm A} to 0.9vA0.9v_{\mathrm A}, where vAv_{\mathrm A} is the Alfv\'en speed. This threshold is smaller than the threshold of 1.2vA\simeq 1.2v_{\mathrm A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at βp0.5\beta_{\mathrm p}\gtrsim 0.5. We discuss the role of the parallel Alfv\'enic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the \emph{Wind} spacecraft's Faraday cups and show that the UαU_{\alpha} values measured in solar-wind streams with TαTαT_{\perp \alpha}\approx T_{\parallel\alpha} are approximately bounded from above by the threshold of the parallel Alfv\'enic instability.Comment: 8 pages, 7 figure

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    Phase resolved spectroscopy of the Vela pulsar with XMM-Newton

    Full text link
    The ~10^4 y old Vela Pulsar represents the bridge between the young Crab-like and the middle-aged rotation powered pulsars. Its multiwavelength behaviour is due to the superposition of different spectral components. We take advantage of the unprecedented harvest of photons collected by XMM-Newton to assess the Vela Pulsar spectral shape and to study the pulsar spectrum as a function of its rotational phase. As for the middle-aged pulsars Geminga, PSR B0656+14 and PSR B1055-52 (the "Three Musketeers"), the phase-integrated spectrum of Vela is well described by a three-component model, consisting of two blackbodies (T_bb1=(1.06+/-0.03)x10^6 K, R_bb1=5.1+/-0.3 km, T_bb2=(2.16+/-0.06)x10^6 K, R_bb2=0.73+/-0.08 km) plus a power-law (gamma=2.2+/-0.3). The relative contributions of the three components are seen to vary as a function of the pulsar rotational phase. The two blackbodies have a shallow 7-9% modulation. The cooler blackbody, possibly related to the bulk of the neutron star surface, has a complex modulation, with two peaks per period, separated by ~0.35 in phase, the radio pulse occurring exactly in between. The hotter blackbody, possibly originating from a hot polar region, has a nearly sinusoidal modulation, with a single, broad maximum aligned with the second peak of the cooler blackbody, trailing the radio pulse by ~0.15 in phase. The non thermal component, magnetospheric in origin, is present only during 20% of the pulsar phase and appears to be opposite to the radio pulse. XMM-Newton phase-resolved spectroscopy unveils the link between the thermally emitting surface of the neutron star and its charge-filled magnetosphere, probing emission geometry as a function of the pulsar rotation. This is a fundamental piece of information for future 3-dimensional modeling of the pulsar magnetosphere.Comment: 27 pages, 9 figures. Accepted for publication in Ap

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure

    The multi-scale nature of the solar wind

    Full text link
    The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.Comment: 155 pages, 24 figure

    Insecurity of Quantum Secure Computations

    Full text link
    It had been widely claimed that quantum mechanics can protect private information during public decision in for example the so-called two-party secure computation. If this were the case, quantum smart-cards could prevent fake teller machines from learning the PIN (Personal Identification Number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all ``one-sided'' two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any ``two-sided'' two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.Comment: The discussion on the insecurity of even non-ideal protocols has been greatly extended. Other technical points are also clarified. Version accepted for publication in Phys. Rev.
    corecore