1,771 research outputs found
Molecular Bremsstrahlung Radiation at GHz Frequencies in Air
A detection technique for ultra-high energy cosmic rays, complementary to the
fluorescence technique, would be the use of the molecular Bremsstrahlung
radiation emitted by low-energy ionization electrons left after the passage of
the showers in the atmosphere. In this article, a detailed estimate of the
spectral intensity of photons at ground level originating from this radiation
is presented. The spectral intensity expected from the passage of the
high-energy electrons of the cascade is also estimated. The absorption of the
photons in the plasma of electrons/neutral molecules is shown to be negligible.
The obtained spectral intensity is shown to be W cm
GHz at 10 km from the shower core for a vertical shower induced by a
proton of eV. In addition, a recent measurement of Bremsstrahlung
radiation in air at gigahertz frequencies from a beam of electrons produced at
95 keV by an electron gun is also discussed and reasonably reproduced by the
model.Comment: 20 pages, 9 figures, figures (2,4,7) improved in v2, accepted by
Phys. Rev.
The influence of the global atmospheric properties on the detection of UHECR by EUSO on board of the ISS
Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission
The experimental search for ultra high energy cosmic messengers, from eV to beyond eV, at the very end of the known energy
spectrum, constitutes an extraordinary opportunity to explore a largely unknown
aspect of our universe. Key scientific goals are the identification of the
sources of ultra high energy particles, the measurement of their spectra and
the study of galactic and local intergalactic magnetic fields. Ultra high
energy particles might, also, carry evidence of unknown physics or of exotic
particles relics of the early universe. To meet this challenge a significant
increase in the integrated exposure is required. This implies a new class of
experiments with larger acceptances and good understanding of the systematic
uncertainties. Space based observatories can reach the instantaneous aperture
and the integrated exposure necessary to systematically explore the ultra high
energy universe. In this paper, after briefly summarising the science case of
the mission, we describe the scientific goals and requirements of the SEUSO
concept. We then introduce the SEUSO observational approach and describe the
main instrument and mission features. We conclude discussing the expected
performance of the mission
Report of the GDR working group on the R-parity violation
This report summarizes the work of the "R-parity violation group" of the
French Research Network (GDR) in Supersymmetry, concerning the physics of
supersymmetric models without conservation of R-parity at HERA, LEP, Tevatron
and LHC and limits on R-parity violating couplings from various processes. The
report includes a discussion of the recent searches at the HERA experiment,
prospects for new experiments, a review of the existing limits, and also
theoretically motivated alternatives to R-parity and a brief discussion on the
implications of R-parity violation on the neutrino masses.Comment: 60 pages, LaTeX, 22 figures, 2 table
Requirements and simulation study of the performance of EUSO as external payload on board the International Space Station
The "Extreme Universe Space Observatory - EUSO" has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Ray, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from the phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- …
