1,844 research outputs found

    A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Equatorial and Polar Latitudes

    Full text link
    Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatory's (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{\deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80{\deg} latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling

    Critical Indices as Limits of Control Functions

    Full text link
    A variant of self-similar approximation theory is suggested, permitting an easy and accurate summation of divergent series consisting of only a few terms. The method is based on a power-law algebraic transformation, whose powers play the role of control functions governing the fastest convergence of the renormalized series. A striking relation between the theory of critical phenomena and optimal control theory is discovered: The critical indices are found to be directly related to limits of control functions at critical points. The method is applied to calculating the critical indices for several difficult problems. The results are in very good agreement with accurate numerical data.Comment: 1 file, 5 pages, RevTe

    Electron-phonon interaction in the solid form of the smallest fullerene C20_{20}

    Full text link
    The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C20_{20} is calculated from first principles. The structure consists of C20_{20} cages in an {\it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({\it fcc}-C22_{22}). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC22_{22} the calculated coupling constant λ/N(0)\lambda/N(0) is 0.28 eV, a value much larger than in C60_{60}, as expected from the larger curvature of C20_{20}. On the basis of the McMillan's formula, the calculated λ\lambda=1.12 and a μ\mu^* assumed in the range 0.3-0.1 a superconducting Tc_c in the range 15-55 K is predicted.Comment: 7 page

    Asymptotically exact probability distribution for the Sinai model with finite drift

    Get PDF
    We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time, ~ t^{\mu n} where \mu is dimensionless mean drift. We employ a method originated in quantum diffusion which is based on the exact mapping of the problem to an imaginary-time Schr\"{odinger} equation. For nonzero drift such an equation has an isolated lowest eigenvalue separated by a gap from quasi-continuous excited states, and the eigenstate corresponding to the former governs the long-time asymptotic behavior.Comment: 4 pages, 2 figure

    Generation of unpredictable time series by a Neural Network

    Full text link
    A perceptron that learns the opposite of its own output is used to generate a time series. We analyse properties of the weight vector and the generated sequence, like the cycle length and the probability distribution of generated sequences. A remarkable suppression of the autocorrelation function is explained, and connections to the Bernasconi model are discussed. If a continuous transfer function is used, the system displays chaotic and intermittent behaviour, with the product of the learning rate and amplification as a control parameter.Comment: 11 pages, 14 figures; slightly expanded and clarified, mistakes corrected; accepted for publication in PR

    Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    Get PDF
    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.Comment: To appear in ApJ (1 April 2000). 37 pages including 11 figures, AAS: ver 5.

    Persistent random walk on a one-dimensional lattice with random asymmetric transmittances

    Full text link
    We study the persistent random walk of photons on a one-dimensional lattice of random asymmetric transmittances. Each site is characterized by its intensity transmittance t (t') for photons moving to the right (left) direction. Transmittances at different sites are assumed independent, distributed according to a given probability density Distribution. We use the effective medium approximation and identify two classes of probability density distribution of transmittances which lead to the normal diffusion of photons. Monte Carlo simulations confirm our predictions.Comment: 7 pages, submitted to Phys. Rev.

    Longitudinal and transversal piezoresistive response of granular metals

    Full text link
    In this paper, we study the piezoresistive response and its anisotropy for a bond percolation model of granular metals. Both effective medium results and numerical Monte Carlo calculations of finite simple cubic networks show that the piezoresistive anisotropy is a strongly dependent function of bond probability p and of bond conductance distribution width \Delta g. We find that piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue that a measurement of the piezoresistive anisotropy could be a sensitive tool to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure

    Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland

    Get PDF
    Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7-128years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9±1 to 160±67gCO2-Cm−2year−1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70% of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58-78years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90%, while with further soil formation, heterotrophically respired C probably from accumulated ‘older' soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10cm depth was small, but increased similarly from 0.4±0.02 to 7.4±1.6gDOCm−2year−1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9±1 to 70±17 and further to 168±68gCm−2year−1 at the <10, 58-78, and 110-128year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1kgCm−2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rock
    corecore