2,847 research outputs found
Copernicus observations of Betelgeuse and Antares
Copernicus observations of the M-supergiants, alpha Ori and alpha Sco, are presented. The MgII h and k resonance lines are strongly in emission in both stars. The k line is highly asymmetric in both stars but the h line is symmetric. Upper limits for several other resonance lines are given for alpha Ori. The possibility is explored that the k line asymmetry is caused by overlying resonance lines of MnI and FeI formed in the cool circumstellar gas shells around these stars. Observations of the MnI 4030-4033 A lines are used to show that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere
Switcher-random-walks: a cognitive-inspired mechanism for network exploration
Semantic memory is the subsystem of human memory that stores knowledge of
concepts or meanings, as opposed to life specific experiences. The organization
of concepts within semantic memory can be understood as a semantic network,
where the concepts (nodes) are associated (linked) to others depending on
perceptions, similarities, etc. Lexical access is the complementary part of
this system and allows the retrieval of such organized knowledge. While
conceptual information is stored under certain underlying organization (and
thus gives rise to a specific topology), it is crucial to have an accurate
access to any of the information units, e.g. the concepts, for efficiently
retrieving semantic information for real-time needings. An example of an
information retrieval process occurs in verbal fluency tasks, and it is known
to involve two different mechanisms: -clustering-, or generating words within a
subcategory, and, when a subcategory is exhausted, -switching- to a new
subcategory. We extended this approach to random-walking on a network
(clustering) in combination to jumping (switching) to any node with certain
probability and derived its analytical expression based on Markov chains.
Results show that this dual mechanism contributes to optimize the exploration
of different network models in terms of the mean first passage time.
Additionally, this cognitive inspired dual mechanism opens a new framework to
better understand and evaluate exploration, propagation and transport phenomena
in other complex systems where switching-like phenomena are feasible.Comment: 9 pages, 3 figures. Accepted in "International Journal of
Bifurcations and Chaos": Special issue on "Modelling and Computation on
Complex Networks
Datations Io-U du plus haut niveau marin du dernier interglaciaire sur la côte du Brésil : utilisation du 229Th comme traceur
Els alumnes de segon grau de formació professional fan pràctiques a les empreses
Abstract not availabl
Discovery of a massive variable star with Z=Zo/36 in the galaxy DDO 68
The Local Volume dwarf galaxy DDO 68, from the spectroscopy of its two
brightest HII regions (Knots 1 and 2) was designated as the second most
metal-poor star-forming galaxy [12+log(O/H)=7.14]. In the repeated spectral
observations in 2008 January with the 6-m telescope (BTA) of the HII region
Knot 3 [having 12+log(O/H)=7.10+-0.06], we find a strong evidence of a
transient event related to a massive star evolution. From the follow-up
observation with the higher spectral resolution in 2008 February, we confirm
this phenomenon, and give parameters of its emission-line spectrum comprising
of Balmer HI and HeI lines. The luminosities of the strongest transient lines
(Ha, Hb) are of a few 10^36 erg s^-1. We also detected an additional continuum
component in the new spectrum of Knot 3, which displays the spectral energy
distribution raising to ultraviolet. The estimate of the flux of this continuum
leads us to its absolute V-band magnitude of ~-7.1. Based on the spectral
properties of this transient component, we suggest that it is related to an
evolved massive star of luminous blue variable type with Z=Zo/36. We briefly
discuss observational constraints on parameters of this unique (in the aspect
of the record low metallicity of the progenitor massive star) event and propose
several lines of its study.Comment: 6 pages, 5 Postscript figures, to appear in MNRAS Letters in June
2008 issu
The irreducible unitary representations of the extended Poincare group in (1+1) dimensions
We prove that the extended Poincare group in (1+1) dimensions is
non-nilpotent solvable exponential, and therefore that it belongs to type I. We
determine its first and second cohomology groups in order to work out a
classification of the two-dimensional relativistic elementary systems.
Moreover, all irreducible unitary representations of the extended Poincare
group are constructed by the orbit method. The most physically interesting
class of irreducible representations corresponds to the anomaly-free
relativistic particle in (1+1) dimensions, which cannot be fully quantized.
However, we show that the corresponding coadjoint orbit of the extended
Poincare group determines a covariant maximal polynomial quantization by
unbounded operators, which is enough to ensure that the associated quantum
dynamical problem can be consistently solved, thus providing a physical
interpretation for this particular class of representations.Comment: 12 pages, Revtex 4, letter paper; Revised version of paper published
in J. Math. Phys. 45, 1156 (2004
Robustness of the European power grids under intentional attack
The power grid defines one of the most important technological networks of
our times and sustains our complex society. It has evolved for more than a
century into an extremely huge and seemingly robust and well understood system.
But it becomes extremely fragile as well, when unexpected, usually minimal,
failures turn into unknown dynamical behaviours leading, for example, to sudden
and massive blackouts. Here we explore the fragility of the European power grid
under the effect of selective node removal. A mean field analysis of fragility
against attacks is presented together with the observed patterns. Deviations
from the theoretical conditions for network percolation (and fragmentation)
under attacks are analysed and correlated with non topological reliability
measures.Comment: 7 pages, 4 figure
Beating noise with abstention in state estimation
We address the problem of estimating pure qubit states with non-ideal (noisy)
measurements in the multiple-copy scenario, where the data consists of a number
N of identically prepared qubits. We show that the average fidelity of the
estimates can increase significantly if the estimation protocol allows for
inconclusive answers, or abstentions. We present the optimal such protocol and
compute its fidelity for a given probability of abstention. The improvement
over standard estimation, without abstention, can be viewed as an effective
noise reduction. These and other results are exemplified for small values of N.
For asymptotically large N, we derive analytical expressions of the fidelity
and the probability of abstention, and show that for a fixed fidelity gain the
latter decreases with N at an exponential rate given by a Kulback-Leibler
(relative) entropy. As a byproduct, we obtain an asymptotic expression in terms
of this very entropy of the probability that a system of N qubits, all prepared
in the same state, has a given total angular momentum. We also discuss an
extreme situation where noise increases with N and where estimation with
abstention provides a most significant improvement as compared to the standard
approach
Diversity, competition, extinction: the ecophysics of language change
As early indicated by Charles Darwin, languages behave and change very much
like living species. They display high diversity, differentiate in space and
time, emerge and disappear. A large body of literature has explored the role of
information exchanges and communicative constraints in groups of agents under
selective scenarios. These models have been very helpful in providing a
rationale on how complex forms of communication emerge under evolutionary
pressures. However, other patterns of large-scale organization can be described
using mathematical methods ignoring communicative traits. These approaches
consider shorter time scales and have been developed by exploiting both
theoretical ecology and statistical physics methods. The models are reviewed
here and include extinction, invasion, origination, spatial organization,
coexistence and diversity as key concepts and are very simple in their defining
rules. Such simplicity is used in order to catch the most fundamental laws of
organization and those universal ingredients responsible for qualitative
traits. The similarities between observed and predicted patterns indicate that
an ecological theory of language is emerging, supporting (on a quantitative
basis) its ecological nature, although key differences are also present. Here
we critically review some recent advances lying and outline their implications
and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and
Theoretical Ecology applied to study language dynamic
- …
